MHD turbulence (in 20-30 mins)

Nic Brummell Applied Mathematics and Statistics University of California Santa Cruz, USA

Blatant plagiarism of new review by Tobias, Cattaneo, Boldyrev (I have permission to distribute this review)

Introduction

- Magnetic fields are ubiquitous in cosmological objects
- Heard about hydrodynamic turbulence. What is the effect of magnetic field?
- Interaction of magnetic fields with electrically-conducting fluid gives rise to a complex system whose dynamics are distinctly different from
 - non-conducting fluid
 - magnetic field in a vacuum
- From system scale to dissipation scale is a wide range => turbulent
- Electrically-conducting fluid = plasma, but in many cases, MHD will do
- => <u>MHD TURBULENCE</u>
- Applications: galaxy clusters, interstellar medium, stellar interiors, laboratory experiments, ... etc
- It is a **BIG PROBLEM**: isotropic homogeneous hydro turbulence spectrum settled in the late 1940s; still arguing about MHD spectrum!

Comparison

Similarities with hydro:

- Fundamental idea of energy transfer in turbulent cascade: injection -> inertial -> dissipation
- Objective: characterise the inertial regime

Differences (more details later):

- More vector fields to deal with! (u and B)
- Dynamos! Self-magnetisation. No hydro equivalent.
- Can divide MHD turbulence into:
 - Large-scale field does not exist = dynamo case
 - Large-scale field already exists (imposed, or are just examining small region), is strong, and we are not concerned with it's origin = guidefield case
 - (we will concentrate here on the latter <sigh>)

Differences

- In hydro, generally become progressively weaker at smaller scales until eventually unconstrained. e.g. rotation, stratification
- In MHD, there is no scale below which the fluid becomes unmagnetised!
- Very important: regular turbulence becomes more isotropic at small scales; MHD turbulence becomes progressively more anisotropic.
 - Hydro turbulence: small eddies advected by larger eddies without affecting their dynamics (Galilean invariance; can remove mean flow)
 - => hydro turbulence becomes isotropic at small scale.
 - Hydro turbulence "forgets" influence of larger scales
 - Large-scale mean field cannot be removed by Galilean transformation.
 - Large-scale field mediates energy cascade at ALL scales in the inertial regime => weak small-scale turbulent fluctuations become progressively more ANISOTROPIC (easier to shuffle field lines that to bend)
 - MHD "never forgets"!

Equations

The usual ...

$$egin{aligned} \partial_t \mathbf{v} + \mathbf{v} \cdot
abla \mathbf{v} &= -
abla p + \mathbf{J} imes \mathbf{B} + Re^{-1}
abla^2 \mathbf{v} + \mathbf{F}, \ \partial_t \mathbf{B} &=
abla imes (\mathbf{v} imes \mathbf{B}) + Rm^{-1}
abla^2 \mathbf{B}, \
abla \cdot \mathbf{B} &=
abla \cdot \mathbf{v} = 0, \end{aligned}$$

Conserved quantities

Energy

Cross-helicity

$$E=rac{1}{2}\int_V \left(v^2+B^2
ight)\,d^3x,$$

Magnetic helicity

$$H^{c} = \int_{V} \mathbf{v} \cdot \mathbf{B} \, d^{3}x,$$
$$H = \int \mathbf{A} \cdot \mathbf{B} \, d^{3}x.$$

 J_V

Notice: lim B->0, conserved quantities switch to energy and kinetic helicity => fundamental differences between hydro and MHD

(Biskamp 2003) In presence of dissipation:

Energy decays faster than magnetic and cross helicity

Energy cascades to small scales (like 3D hydro) (fluctuations in equipartition)

Magnetic helicity cascades towards large-scales (like 2D hydro)

Cross-helicity also cascades towards small-scales (but is not sign-definite, so can be amplified or destroyed locally; will lead to self-organisation [later])

Waves (incompressible)

Small perturbation analysis with mean field reveals solutions as waves that propogate on the stationary and uniformly-magetised background.

$$\mathbf{v}(\mathbf{x}, t) = \mathbf{v}_k \exp(-i\omega t + i\mathbf{k} \cdot \mathbf{x})$$
$$\mathbf{b}(\mathbf{x}, t) = \mathbf{b}_k \exp(-i\omega t + i\mathbf{k} \cdot \mathbf{x})$$

Shear Alfven waves:

Dispersion - $\omega = |k_z|v_A$ Polarisation - $\mathbf{b}_k \cdot \mathbf{k} = \mathbf{b}_k \cdot \mathbf{B}_0 = 0$ Two waves: $\mathbf{v}_k = -\mathbf{b}_k$ $\mathbf{v}_k = \mathbf{b}_k$ (Compressible: "Alfven")Pseudo Alfven waves: $\omega = |k_z|v_A$ Dispersion - $\omega = |k_z|v_A$ Polarisation - $b_k \cdot \mathbf{k} = 0$ and lies in the plane of \mathbf{k} and \mathbf{B}_0 .Two waves: $\mathbf{v}_k = -\mathbf{b}_k$ $\mathbf{v}_k = \mathbf{b}_k$ (Compressible: "Slow")

Waves

Hydro turbulence = eddies: MHD turbulence = eddies and waves

Elsasser variables: $\mathbf{z}^{\pm} = \mathbf{v} \pm \mathbf{b}$

$$\left(\begin{matrix} \stackrel{\mathbf{O}}{\overleftarrow{\partial t}} \mathbf{Frevious Page} \\ \hline \partial t \end{matrix} \right) \mathbf{z}^{\pm} + \left(\mathbf{z}^{\mp} \cdot \nabla \right) \mathbf{z}^{\pm} = -\nabla P + \frac{1}{2} (\nu + \eta) \nabla^2 \mathbf{z}^{\pm} + \frac{1}{2} (\nu - \eta) \nabla^2 \mathbf{z}^{\mp} + \mathbf{f}^{\pm} \mathbf{z}^{\pm} \mathbf$$

For ideal, incompressible, unforced MHD equations, there exists EXACT NONLINEAR SOLN that is a NON-DISPERSIVE ALFVEN WAVE PACKET

Nonlinear interactions are collisions of counter-propogating wave packets and packets get split and distorted until dissipated.

WEAK MHD TURBULENCE

Linear $(\mathbf{v}_A\cdot
abla)\mathbf{z}^{\pm} \sim v_A k_{\parallel} b_{\lambda}$ (advection along guide field) >>

nonlinear $(\mathbf{z}^{\mp} \cdot \nabla) \, \mathbf{z}^{\pm} \sim k_{\perp} b_{\lambda}^2$ (distortion/transfer of energy)

$$k_\parallel v_A \gg k_\perp b_\lambda$$

- Mean-fluctuating interactions dominate
- Takes many interactions to distort the wave packets.
- Weak MHD turbulence is an ensemble of weakly interacting waves.

Inertial scalings

Inertial scalings (cont)

ANISOTROPIC wave packets interactions

Strong turbulence: (Goldreich& Sridhar 1995; Cho & Vishniac 2000; Boldyrev 2005)

Achieved when CRITICAL BALANCE $|k_\parallel v_A \sim k_\perp b_\lambda|$

- Fluctuating-fluctuating interactions comparable to mean-fluctuating
- Field lines strongly bent now
- Wave packets are distorted in one one interaction not many
- Small wave packets are not guided by the original guide field but the locally distorted field (disorted by larger packets)
- Scale-dependent anisotropy

Spectrum:

$$E_{GS}(k_{\perp}) \propto k_{\perp}^{-5/3}$$

Inertial scalings (cont)

ANISOTROPIC wave packets interactions

Strong turbulence: (cont)

BUT

numerics find
$$E(k_{\perp}) \propto k_{\perp}^{-3/2}$$
 Flatter!

Latest theories explain this: (Boldyrev 2005, 2006)

Explains longer energy transfer times at small scales by DYNAMICAL ALIGNMENT.

v and b aligned with scale dependent angle; reduces nonlinear interactions (Balanced ... unbalanced ...)

Conclusions

MHD guide-field turbulence very different from hydro

Can be WEAK or STRONG:

- Weak: mean-fluctuating interactions dominate
- Strong: fluctuating-fluctuating are comparable
- Transition in the inertial cascade? If strength of fluctuating-fluctuating interactions increase with smaller scales, should be a transition from weak to strong turbulence in a sufficiently extended inertial regime (very difficult to simulate).

Energy cascade ANISOTROPIC: transfer mostly transverse to the local mean field.

Polarisation vectors tend to align in the transverse plane: consequences for energy spectrum.

Elongation and alignment increase with decreasing scale