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The Eagle Nebula (M16)

T. A. Rector & B. A. Wolpa, NOAO, AURA
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The Pillars of Creation in M16

J. Hester, P. Scowen (ASU), HST, NASA
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How do these structures form?

Instabilities in a
shocked shell:

Rayleigh-Taylor instability:
•Structures to smooth, no
complex density structure

Gravitational instability:
(Collect and Collapse)
•Timescale and masses to
large, more likely in
supernova-shells

 Radiation Driven Implosion
of pre-existing clumps

Ionization of the turbulent
parental cloud

‘Radiative Round-Up’

(figure by courtesy of Lise Deharveng)
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I" = I" (v r , v n ,t) :   intensity at a given monochromatic frequency "
#" = #" (v r , v n ,t) :  emissivity

$" =$" (v r , v n ,t) :  mass absorption coefficient

Radiative Transfer

7-dimensional partial differential equation

Assumptions: •Intensity is not time dependent

•Only one source emitting / no scattering => ε=0
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The Strömgren-Sphere

•Ionization degree:

•Recombination:

•Equilibrium:

•The Strömgren-Sphere:
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Evolution of a Strömgren-Sphere
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Simplified Prescription

O6

Ionised Strömgren sphere

104 K 10 K

Average temperature Tion = 104 K

Every UV-photon ionises
one hydrogen atom

Shock front is driven
into the cold medium

•Heating by UV radiation via T = Tcold ·(1 – η) + Tion·η
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• OMP-parallel tree/SPH-Code: iVINE: Ionization + VINE
    (Gritschneder et al. 2009, MNRAS, 393, 21 ; Wetzstein et al. 2009, ApJS, 184, 298)

• Following the radiation along a grid of  line-of-sights (ray shooting)
• The size Δy of the rays is determined by the smoothing length close to the

area of infall
• As soon as the ray size gets twice as large as the local smoothing length, the

ray is refined.
• On the ray the ionization is calculated (photon conserving)
• The particles get assigned a temperature

Numerical Method I: iVINE

! 

T =" Thot + (1#") Tcold
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Physical Timescales

! 

t ff =
3T

32"#

thydro = l cs  with cs =
kT

µmH

trec =
1
n$B

tcool =
nkT
%cool

•Gravity:

•Hydrodynamics:

•Ionisation:

•Cooling

! 

n =100cm"3,  Tcold =10K,  Thot =104K,  #B = 2.7 $10"13cm3s"1

%

t ff  >  tcold >   thot    >   trec >  tcool
5Myr > 4Myr > 76kyr >1kyr > 0.3kyr
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Numerical Timesteps

•Gravity:

•Cold Gas:

•Hot Gas:

•D-front:

•R-front:

•Cooling:

! 

t ff  " 5Myr => Timestep criterion via acceleration

! 

tcold  " 4Myr => Timestep criterion (CFL)

! 

vD < ccold => Timestep criterion of hot gas sufficient

! 

tcooling " 0.3kyr => Isothermal Equation of State! 

vR > ccold => No timestep criterion
Solution: small initial timestep to avoid Δx>0.1

! 

thot  " 75kyr => Boost in energy, no criterion
Solution: new timestep as soon as x>10-3

! 

"tnew = "told #
ccold

chot
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300 cm-310 K>2 Mio
nmeanTParticles

Source of ionization:

Turbulent box (Mach 5):

Ionization of a Turbulent Cloud

spatial resolution as high as 0.03 pc with self-gravity (open boundaries)

Mpart ~ 10-4 Msun hydrodynamics: periodic boundaries

• the radiation sweeps up hydrogen and triggers it into collapse
     (Gritschneder et al. 2009, MNRAS, 393, 21 , Gritschneder et al. 2009, APJ, 694, L26)

F0=5•109 photons cm-2
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! 

Mcore   " 0.7Msun

MpillarI  "12Msun

MpillarII " 8Msun

npillar    " 3# 104cm$3

‘Radiative Round-Up’

t=550 kyr

~10% of the mass
 is ionized
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Driving Turbulence

! 

" v = #1/ 2v

! 

102cm"3 < # <104cm"3

Conversion efficiency:

! 
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" # 2 $10%6
Previous estimates:

(Gritschneder et al. 2009, APJ, 694, L26)

(e.g MacLow & Klessen, 2004)
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Dependence on Mach Number

Mach 1.5 Mach 5 Mach 7 Mach 12.5
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Further Parameter Study

Gritschneder et al., submitted
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VINE vs MOCASSIN

Ercolano & Gritschneder, 2010, in prep
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Diffuse Heating
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Numerical Implementation II: VINERY

• VINE + SPHRAY  (Altay et al. 2008, MNRAS 386)

• Monte Carlo approach
• Axis Aligned Bounding Box (AABB) test to calculate intersections
• Ray updates similar to CRASH

b
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Ray - Particle Intersection

• Amend oct-tree with AABB
(define leaves)

• Determine leaves hit by ray
 by using Plücker coordinates

• Determine particles hit by ray
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Calculation of the Ionisation Degree

• Photons are deposited according to the column density,
calculated via W(b)

• Recombinations since the particle got last hit by a ray are taken into
account

• Rate equations for 6 species (HI, HII, HeI, HeII, HeIII,e-)
• Time integration using a RK or a BDF solver

⇒ New ionisation degree / abundances / temperature
⇒ New time-step (as in iVINE)
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t=160 kyr
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Conclusions

• ‘Radiative Round-Up’ leads naturally to the observed structures and
morphology, density and kinematics are reproduced

– Whether pillars form at all depends on the temperature and the Mach number (i.e. M >2 @ 10K, M
>10 @ 100K)

– The size of the pillars is depending on the turbulent driving mode (i.e. the extend of the initial largest
structure)

– The density of the pillars is determined by the initial flux, density and the time since the ignition of
the source

– Whether pillars or globules form depends on the initial tangential velocity (vc~1km s-1), i.e. on the
Mach number

• To treat the evolution of the entire HII region an implementation of point
sources will be needed

• These implementation (and any other treating radiative transfer on a non-
constant grid) will need very effective ray-sphere-intersection test

• There are open issues with respect to turbulence, turbulent driving, mixing,
…


