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What is the typical outcome of star formation?

• Stars typically form in binary systems.  But how does a binary system form? Can 
it come from fragmentation of a core as it collapses?  More generally, how many 
stars does one core produce?  What determines the result of core collapse?

• Although a lot of observational and numerical work has been done to explore this 
question, the initial conditions for core collapse and the processes that connect 
these initial conditions to the outcome of the collapse are not well understood.

• We want to study the collapse of a core analytically, by imposing a linear 
perturbation to a self-similar collapse solution.  This will enable us to pinpoint the 
processes that could lead to core fragmentation at the initial phases of the 
collapse. 

• Ideally, we would like to study various equilibrium solutions, having varying 
intrinsic stability.
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intrinsic stability.

This relates to the origin 
of the initial 

mass function: Does one 
core give one star?

If it fragments, how is the 
mass distributed?
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processes that could lead to core fragmentation at the initial phases of the 
collapse. 

• Ideally, we would like to study various equilibrium solutions, having varying 
intrinsic stability.

The number of 
fragments depends on 
the steepness of the 
initial density distribution 
and the level of internal 
turbulence
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• Although a lot of observational and numerical work has been done to explore this 
question, the initial conditions for core collapse and the processes that connect 
these initial conditions to the outcome of the collapse are not well understood.

• We want to study the collapse of a core analytically, by imposing a linear 
perturbation to a self-similar collapse solution.  This will enable us to pinpoint the 
processes that could lead to core fragmentation at the initial phases of the 
collapse. 

• Ideally, we would like to study various equilibrium solutions, having varying 
intrinsic stability.

Observations of Young Stellar 
Objects (ie Maury et al. 2010) 
suggest that Class 0 (younger) 

objects show less multiplicity than 
Class I/II (more evolved) objects.
This suggests that fragmentation 

should occur at the early stages of 
the collapse
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Analytical collapse solutions:
The Shu self-similar solutions (Shu 1977)

Mass conservation:                               , 
∂M

∂t
+ u

∂M

∂r
= 0

∂M

∂r
= 4πr2ρ

∂u

∂t
+ u

∂u

∂r
= −α

ρ

∂ρ

∂r
− GM

r2Force equation:                          

Choosing the similarity variable: x = r/αt

ρ(r, t) =
α(x)

4πGt2
M(r, t) =

α3t

G
m(x) u(r, t) = αu(x)

We look for solutions of the form:

So the fluid equations become:

�
(x− u)2 − 1

� du
dx

=

�
α(x− u)− 2

x

�
(x− u)

�
(x− u)2 − 1

� 1

α

dα

dx
=

�
α− 2

x
(x− u)

�
(x− u)

m = x2α(x− u)

Solving these 
equations gives a 
family of collapse 

solutions
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We look for solutions of the form:

So the fluid equations become:

�
(x− u)2 − 1

� du
dx

=

�
α(x− u)− 2

x

�
(x− u)

�
(x− u)2 − 1

� 1

α

dα

dx
=

�
α− 2

x
(x− u)

�
(x− u)

m = x2α(x− u)

Solving these 
equations gives a 
family of collapse 

solutions

“minus solutions”

“plus solutions”

Solutions which have zero 
velocities at the beginning 
of the collapse have the 

asymptotic form:

  as                        
α ∼ A/x2 u ∼ −(A− 2)/x

x → ∞
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Analytical collapse solutions:
The Larson-Penston flow

The Larson-Penston flow (Larson 1969, Penston 1969a) is a special case of the 
Shu solutions and belongs to the class of solutions which have critical points.

The critical point is located 
at x=2.33
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Applying a linear perturbation to an equilibrium 
collapse solution: exponentially growing modes only

The equations of hydrodynamics in spherical coordinates:
∂ρ

∂t
+

1

r2
∂

∂r

�
r2ρur

�
+

1

rsinθ

∂

∂θ
(sinθρuθ) +

1

rsinθ

∂

∂φ
(ρuφ) = 0

∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+

uφ

rsinθ

∂ur

∂φ
−

u2
φ + u2

θ

r
= −1

ρ

∂ρ

∂r
− ∂Ψ

∂r

∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uφ

rsinθ

∂uθ

∂φ
+

uruθ

r
−

u2
φ

rtanθ
= − 1

rρ

∂ρ

∂θ
− ∂Ψ

∂θ
∂uφ

∂t
+ ur

∂uφ

∂r
+

uθ

r

∂uφ

∂θ
+

uφ

rsinθ

∂uφ

∂φ
+

uruφ

r
= − 1

rρsinθ

∂ρ

∂φ
− ∂Ψ

∂φ
1

r2
∂

∂r

�
r2

∂

∂r

�
Ψ+

1

r2sinθ

∂

∂θ

�
sinθ

∂

∂θ

�
Ψ+

1

r2sin2θ

∂2Ψ

∂φ2
= ρ
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�
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�
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We want to apply a perturbation of the form:

ρ(r, t) =
R(x)

t2
+ tσ−2r1(x)Y

m
l = ρ0 + δρ

ur(r, t) = u(x) + tσu1r(x)Y
m
l = ur0 + δur

uθ(r, t) =
1

l + 1
tσu1θ(x)

∂Y m
l

∂θ
= δuθ

uφ(r, t) =
1

l + 1

1

sinθ
tσu1θ(x)

∂Y m
l

∂φ
= δuφ

Ψ(r, t) = Ψ0(x) + tσΦ1(x)Y
m
l = Ψ0 + δΦ
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We want to apply a perturbation of the form:

ρ(r, t) =
R(x)

t2
+ tσ−2r1(x)Y

m
l = ρ0 + δρ

ur(r, t) = u(x) + tσu1r(x)Y
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l = ur0 + δur

uθ(r, t) =
1

l + 1
tσu1θ(x)

∂Y m
l

∂θ
= δuθ

uφ(r, t) =
1

l + 1

1

sinθ
tσu1θ(x)

∂Y m
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∂φ
= δuφ

Ψ(r, t) = Ψ0(x) + tσΦ1(x)Y
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Finally, after some manipulation, the perturbed equations take the form:
�
(u− x)2 − 1

� dr1
dx

+

��
σ − 2 +

2u

x
+

du

dx

�
(u− x) +

1

R

dR

dx

�
r1+

��
2R

x
+

dR

dx

�
(u− x)−R

�
σ +

du

dx

��
u1r −

lR

x
(u− x)u1θ −R

dΦ

dx
= 0

(u− x)
du1r

dx
+

1

R

dr1
dx

− 1

R2

dR

dx
r1 +

�
σ +

du

dx

�
u1r +

dΦ1

dx
= 0

(u− x)
du1θ

dx
+
�u
x
+ σ

�
u1θ + (l + 1)

1

xR
r1 +

l + 1

x
Φ1 = 0

d2Φ1

dx2
+

2

x

dΦ1

dx
− l(l + 1)

x2
Φ1 = r1
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Perturbation with spherical harmonics

l=0

l=1

l=2

l=3

The l=2 mode (“bar 
perturbation”) is very 

interesting in the case of 
core collapse
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Looking for a dispersion relation by a “shooting” 
method

• We start with the asymptotic form of the perturbation near x=0, replacing the 
Larson-Penston solution in our equations:

• We get two independent solutions for (a,b)=(0,1) and (1,0) and integrate them 
to the critical point.  Skipping the critical point, we integrate to infinity, looking 
for σ such that it minimizes the value of the potential at infinity (This condition 
required by the asymptotic form of the solution at infinity).

r1 = axl, u1r = bxl−1, u1θ = b
l + 1

l
xl−1,Φ1 =

�
− a

ρ0
− b(σ + 1− l

3
)

�
xl
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In this case, the perturbation has its full form:

ρ(r, t) =
R

t2
+ Y m

l tσ−2 [r1(x)cos(ωlnt) + r2(x)sin(ωlnt)] = ρ0 + δρ

ur(r, t) = u(x) + Y m
l tσ [u1r(x)cos(ωlnt) + u2r(x)sin(ωlnt)] = ur0 + δur

uθ(r, t) =
1

l + 1

∂Y m
l

∂θ
tσ [u1θcos(ωlnt) + u2θsin(ωlnt)] = δuθ

Ψ(r, t) = Ψ0(x) + Y m
l tσ [Φ1cos(ωlnt) + Φ2sin(ωlnt)] = δΨ

uφ(r, t) =
1

l + 1

1

sinθ

∂Y m
l

∂φ
tσ [u1φcos(ωlnt) + u2φsin(ωlnt)] = δuφ

Applying a linear perturbation to an equilibrium collapse 
solution: full perturbation, including oscillatory modes
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(u− x)
dr1

dx
+R

du1r

dx
+

�
2R

x
+

dR

dx

�
u1r +

�
2u

x
+

du

dx
+ σ − 2

�
r1 + ωr2 −

Rl

x
u1θ = 0

(u− x)
dr2
dx

+R
du2r

dx
+

�
2R

x
+

dR

dx

�
u2r +

�
2u

x
+

du

dx
+ σ − 2

�
r2 − ωr1 −

Rl

x
u2θ = 0

1

R

dr1
dx

+ (u− x)
du1r

dx
+

�
σ +

du

dx

�
u1r + ωu2 −

1

R2

dR

dx
r1 + Φ1 = 0

1

R

dr2
dx

+ (u− x)
du2r

dx
+

�
σ +

du

dx

�
u2r − ωu1 −

1

R2

dR

dx
r1 + Φ2 = 0

d2Φ2

dx2
+

2

x

dΦ2

dx
− l(l + 1)

x2
Φ2 = r2

d2Φ1

dx2
+

2

x

dΦ1

dx
− l(l + 1)

x2
Φ1 = r1

Applying a linear perturbation to an equilibrium collapse 
solution: full perturbation, including oscillatory modes
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A more general method for finding the eigenvalues

• The “shooting” method used by Hanawa & Matsumoto does not allow for 
generalization to systems with more degrees of freedom, like the full 
perturbation we want to implement.

• We then apply a more general method, where we look for the eigenvalue that 
minimizes the value of the determinant of a matrix composed of five vectors, 
each representing one solution to the system of equations.

• We start from two independent sets of solutions from x=0 and three from 
x=infinity and integrate them to the critical point.  The determinant of this 
matrix will be zero when the sigma chosen is an eigenvalue of the system.

• This method is easy to generalize for the full perturbation, and also to apply 
with different equilibrium solutions.
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Project status so far

• We have reproduced the result from Hanawa & Matsumoto (1999), where they 
find a growth rate of -0.35 for the l=2 perturbation, using their “shooting” 
method.

• We have derived the full perturbed equations, including the oscillatory modes 
and their asymptotic behaviors at zero and infinity for the Larson-Penston 
flow.

• We are now finishing the code which uses the determinant minimization 
method (still some bugs to be cleaned), so that we can confirm the Hanawa & 
Matsumoto results and move on to finding the dispersion relation for the full 
perturbation.  This would already be a new result.
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Outlook

• Once we have the method for the determinant minimization ready, we will be 
able to look for unstable solutions for the perturbations of the Larson-Penston 
flow, including the oscillatory modes as well.

• The next step would be to use the Shu solutions as the state of equilibrium 
and vary the parameter A to get different initial conditions (more stable vs 
more unstable initial density and velocity profiles)

• Eventually, we would like to perform the same analysis for a polytropic 
equation of state, which is more realistic for studying core collapse.  

• In addition, we want to simulate the evolution of the perturbed flows using the 
RAMSES code.
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Thank you for your spontaneous applause! 
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Fragmentation at the Class 0 phase?

• Young Stellar Objects (YSO) are usually classified according to the shape of 
their Spectral Energy Distribution (SED) and, more specifically according to 
their spectral index, α:

• According to the value of α, YSOs are classified into Class 0, Class I/II and 
Class III, in a rough evolutionary sequence.  

• Searches for multiplicity in Class 0 and Class I/II objects (Maury et al. 2010) 
have shown that there is a tendency for multiplicity in Class I/II objects, which 
is not observed for Class 0 objects.

• Class 0 objects, being the initial phase of core collapse, can be thought as 
the systems our approach is trying to represent.

α =
d log(λFλ)

d log(λ)
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