
Planetary Dynamics 
in Collisional Particle Disks

Supervisor: Eugene Chiang, U.C.Berkeley; 
Yoram Lithwick, Northwestern University

Student: Zhao Sun, Purple Mountain Observatory



Motivation

Tiscareno et al. (2010, ApJL)



Tiscareno et al. (2010, ApJL)

Motivation



The model

• A subroutine simulates collisions between test particles 
in a disk with vertical optical depth                   .

• In collisional particle disks, collisions tend to isotropize
the velocity distribution.

• The collision time is                   ,
where u is the one-dimensional
random speed and nv is
the volumetric number density, 
which is related to    via                  .

• Therefore             .
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The collision algorithm

• We capture this behavior with two-dimensional 
simulations in which all bodies have zero inclination.

• For every time step dt, a two-dimensional square grid is 
built, with each grid element having dimensions               . 

• If two test particles fall in the same grid cell, 
• if their relative speed is negative (i.e., if they are 

approaching each other), 
• then they collide with each other with 

probability                       . 
• A random number generator is used to determine 

whether or not they actually collide.
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The collision algorithm

• First, consider a simpler algorithm that also yields the 
correct collision time. 

• In this simpler algorithm, one waits for a time interval of 
torb (instead of dt) before finding which particles fall in the 
same grid cell. 

• Then two particles that do fall in the same grid cell, and 
have converging velocities, collide with probability Pcol = 1. 

• Since the probability that a given particle lies in a cell 
occupied by a second particle is   , the collision time 
is         .

• Turning now to the algorithm that we actually use, since 
we apply this algorithm every time interval dt (and not 
torb), we must correspondingly reduce the probability of a 
collision by dt/torb in order to maintain the collision time at 
the value given by             .
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The collision algorithm

• In a naive bruteforce algorithm, one must restrict            
in order to ensure that any two particles that fall within a 
distance s of each other collide. 

• This restriction on dt can be very cumbersome 
when              , as it will be whenever planets stir up the 
eccentricities. 

• We avoid the Courant condition by treating the vertical 
dimension statistically: when two particles fall within the 
same two-dimensional grid cell, they need only collide a 
small fraction of the time because their vertical positions 
will, in general, differ.

• With our algorithm, we may choose dt to be as large as 
is allowed by the integrator, which is typically a 
significant fraction of the orbital time.
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The collision algorithm

• If two particles have been selected for a collision, then 
their velocities are updated as though the bodies were 
frictionless spheres whose surfaces touch (e.g., Trulsen
1971): the component of the relative velocity vector that 
lies parallel to the axis connecting the two particles is 
reversed in sign (from a converging velocity to a 
diverging one) and multiplied by the coefficient of 
restitution , i.e., in obvious notation,                        .

• Note that a collision between two particles separated by 
distance d changes the velocities of the particles as 
though each were a smooth sphere with radius d/2. 
Since d changes from collision to collision, the particles’
sizes are effectively changing; they are only 
approximately sgrid.
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The collision algorithm

• how the code finds which pairs of particles lie in the 
same grid cell: 

• To find colliding pairs, the code first determines in which 
grid cell each particle lies. A grid cell is labeled by two 
integers representing its location along the x- and y-axes.

• Second, the code sorts the grid cells that contain test 
particles with the heapsort algorithm ( Press et al. 1992).

• The sorted occupied grid cells are then checked to see if 
the same grid cell is repeated for two different particles.

• The step that takes the most time in the entire collision 
algorithm is the heapsort, which requires                
operations. tp tplnN N



The collision algorithm

• Heapsort begins by 
building a heap out of the 
data set, and then 
removing the largest item 
and placing it at the end of 
the partially sorted array. 
After removing the largest 
item, it reconstructs the 
heap, removes the largest 
remaining item, and places 
it in the next open position 
from the end of the partially 
sorted array. This is 
repeated until there are no 
items left in the heap and 
the sorted array is full. 



The collision algorithm



Density evolution

• A ring diffuses in the time that it takes a particle to 
random walk across its width. 



Density evolution

• This random walk has a step-size equal to the epicyclic
excursion of a particle (                  ) and a time per 
random step of tcol. Thus, to diffuse the width of the ring  
takes a time

• Since                      ,where                  , a ring expands as
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Simulations of narrow circular rings

Lithwick & Chiang (2007, ApJ)



The symplectic integrator



The hybrid symplectic integrator

• The integration scheme for the second-order hybrid 
integrator is as follows.

• (i) The coordinates remain fixed. Each body receives an 
acceleration owing to the other bodies (but not the Sun), 
weighted by a factor K, lasting for dt/2.

• (ii) The momenta remain fixed, and each body shifts 
position by an amount .

• (iii) Bodies not in an encounter move on a Keplerian orbit 
about the Sun for dt. For bodies in an encounter, the 
Kepler terms, and the close encounter terms weighted 
by (1-K), are integrated numerically for dt.

• (iv) As step (ii).
• (v) As step (i).
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Test of the code
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Early results

Massless ring with a moon incide.
Ring width is 0.1AU.
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• How does Type I/II migration rates vary 
with planet eccentricity?

• How do gap widths and lengths vary with 
planet mass? 

• For planets that do not open gaps or open 
only partial gaps, what torques are exerted 
by co-orbital disk material on the planet? 

• ……

Applications



Future plans

• Optimize the code (and maybe parallelize 
it).

• Find out the best combinations of the free 
parameters,                .

• Apply it on the propellers in Saturn's rings 
and compare with the observations. 

• ……
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Thank you!


