
Planetary Dynamics
in Collisional Particle Disks

Supervisor: Eugene Chiang, U.C.Berkeley;
Yoram Lithwick, Northwestern University

Student: Zhao Sun, Purple Mountain Observatory

Motivation

Tiscareno et al. (2010, ApJL)

Tiscareno et al. (2010, ApJL)

Motivation

The model

• A subroutine simulates collisions between test particles
in a disk with vertical optical depth .

• In collisional particle disks, collisions tend to isotropize
the velocity distribution.

• The collision time is ,
where u is the one-dimensional
random speed and nv is
the volumetric number density,
which is related to via .

• Therefore .

2

tp 1sN
r

 




 2
col 1 vt n s u

2
orbvn s ut 

r



orb
col

tt




Lithwick & Chiang (2007, ApJ)



The collision algorithm

• We capture this behavior with two-dimensional
simulations in which all bodies have zero inclination.

• For every time step dt, a two-dimensional square grid is
built, with each grid element having dimensions .

• If two test particles fall in the same grid cell,
• if their relative speed is negative (i.e., if they are

approaching each other),
• then they collide with each other with

probability .
• A random number generator is used to determine

whether or not they actually collide.

grid grids s

col orb 1P dt t 

Lithwick & Chiang (2007, ApJ)

The collision algorithm

• First, consider a simpler algorithm that also yields the
correct collision time.

• In this simpler algorithm, one waits for a time interval of
torb (instead of dt) before finding which particles fall in the
same grid cell.

• Then two particles that do fall in the same grid cell, and
have converging velocities, collide with probability Pcol = 1.

• Since the probability that a given particle lies in a cell
occupied by a second particle is , the collision time
is .

• Turning now to the algorithm that we actually use, since
we apply this algorithm every time interval dt (and not
torb), we must correspondingly reduce the probability of a
collision by dt/torb in order to maintain the collision time at
the value given by .



orb
col

tt



Lithwick & Chiang (2007, ApJ)

orbt 

The collision algorithm

• In a naive bruteforce algorithm, one must restrict
in order to ensure that any two particles that fall within a
distance s of each other collide.

• This restriction on dt can be very cumbersome
when , as it will be whenever planets stir up the
eccentricities.

• We avoid the Courant condition by treating the vertical
dimension statistically: when two particles fall within the
same two-dimensional grid cell, they need only collide a
small fraction of the time because their vertical positions
will, in general, differ.

• With our algorithm, we may choose dt to be as large as
is allowed by the integrator, which is typically a
significant fraction of the orbital time.

dt s u

Lithwick & Chiang (2007, ApJ)

orbu s t

The collision algorithm

• If two particles have been selected for a collision, then
their velocities are updated as though the bodies were
frictionless spheres whose surfaces touch (e.g., Trulsen
1971): the component of the relative velocity vector that
lies parallel to the axis connecting the two particles is
reversed in sign (from a converging velocity to a
diverging one) and multiplied by the coefficient of
restitution , i.e., in obvious notation, .

• Note that a collision between two particles separated by
distance d changes the velocities of the particles as
though each were a smooth sphere with radius d/2.
Since d changes from collision to collision, the particles’
sizes are effectively changing; they are only
approximately sgrid.

rel, rel,u u   

The collision algorithm

• how the code finds which pairs of particles lie in the
same grid cell:

• To find colliding pairs, the code first determines in which
grid cell each particle lies. A grid cell is labeled by two
integers representing its location along the x- and y-axes.

• Second, the code sorts the grid cells that contain test
particles with the heapsort algorithm (Press et al. 1992).

• The sorted occupied grid cells are then checked to see if
the same grid cell is repeated for two different particles.

• The step that takes the most time in the entire collision
algorithm is the heapsort, which requires
operations. tp tplnN N

The collision algorithm

• Heapsort begins by
building a heap out of the
data set, and then
removing the largest item
and placing it at the end of
the partially sorted array.
After removing the largest
item, it reconstructs the
heap, removes the largest
remaining item, and places
it in the next open position
from the end of the partially
sorted array. This is
repeated until there are no
items left in the heap and
the sorted array is full.

The collision algorithm

Density evolution

• A ring diffuses in the time that it takes a particle to
random walk across its width.

Density evolution

• This random walk has a step-size equal to the epicyclic
excursion of a particle () and a time per
random step of tcol. Thus, to diffuse the width of the ring
takes a time

• Since ,where , a ring expands as

rms gridre s 

2

diff col col
grid

t t t
s

 
  
 

 

1colt n  

1 3t 

tpn dN dr

Simulations of narrow circular rings

Lithwick & Chiang (2007, ApJ)

The symplectic integrator

The hybrid symplectic integrator

• The integration scheme for the second-order hybrid
integrator is as follows.

• (i) The coordinates remain fixed. Each body receives an
acceleration owing to the other bodies (but not the Sun),
weighted by a factor K, lasting for dt/2.

• (ii) The momenta remain fixed, and each body shifts
position by an amount .

• (iii) Bodies not in an encounter move on a Keplerian orbit
about the Sun for dt. For bodies in an encounter, the
Kepler terms, and the close encounter terms weighted
by (1-K), are integrated numerically for dt.

• (iv) As step (ii).
• (v) As step (i).

2ii
dt p m 

Test of the code

Lithwick & Chiang (2007, ApJ)
0.3 

Early results

Massless ring with a moon incide.
Ring width is 0.1AU.

63 10moonm m  

Early results

Massless ring with a moon incide.
Ring width is 0.1AU.

63 10moonm m  

Early results

Massless ring with a moon incide.
Ring width is 0.1AU.

63 10moonm m  

Early results

Massless ring with a moon incide.
Ring width is 0.1AU.

63 10moonm m  

• How does Type I/II migration rates vary
with planet eccentricity?

• How do gap widths and lengths vary with
planet mass?

• For planets that do not open gaps or open
only partial gaps, what torques are exerted
by co-orbital disk material on the planet?

• ……

Applications

Future plans

• Optimize the code (and maybe parallelize
it).

• Find out the best combinations of the free
parameters, .

• Apply it on the propellers in Saturn's rings
and compare with the observations.

• ……

, , ,gridr s 

Thank you!

