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ABSTRACT

A “potential escaper” is a cluster star that has orbital energy greater than

the escape energy, and yet, is in a stable orbit. Analytic models of stellar

clusters typically have a truncation energy that explicitly excludes these high

energy stars. The aim of this study is to build a self-consistent model that

includes potential escapers. We present our initial exploration into predicting

the orbital stability for potential escapers in terms of approximate integrals of

motion. As a first approximation, we assume a constant distribution function

and are able to write an expression for the associated density using the region

of stability to define the limits of integration for the 0th order moment. In

future work we will numerically calculate a self-consistent model that includes

potential escapers.

1 INTRODUCTION

Globular clusters are well approximated as spherical, single-population, stellar systems, mak-

ing them an excellent laboratory for testing for our understanding of simple N-body systems.

With such a simple system, it might be expected that a star with a velocity greater than

the escape speed will not remain in a stable orbit about the system. Nonetheless, there is

evidence for a population of stars, called “potential escapers”, that do exactly this. It is

the aim of this work to further understand the orbits of this population and to build a

“snapshot” model that includes them.

A “snapshot” model is a time-independent model that aims to describe the observed

and simulated properties of globular clusters. Such a model is defined by a distribution
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function in phase space (f). The fundamental structural and kinematical properties of the

cluster can be derived as associated moments in velocity space, with the zeroth, first and

second order moments corresponding to the density (ρ), mean velocity vector and velocity

dispersion tensor (σ), respectively (see §2).

Several rather successful models have been proposed that have f = f(E) (e.g. Woolley

& Dickens 1961; King 1966; Wilson 1975), where f = 0 for energies greater than some

critical value. The motivation for an energy truncation arises from the following argument.

A typical globular cluster is in orbit about a host galaxy. As such, it is natural to consider

cluster dynamics in a frame that rotates with the cluster about the galactic center, and

throughout this paper we assume that the orbit is circular. The potential in the rotating

frame is called the effective potential (Φeff ), and it includes the resulting centrifugal term.

The effective potential has two saddle points which are located in a radial line from the

galactic center through the center of the cluster, and are at a distance rJ on either side of

the cluster. This radial peak in Φeff can be used to define a critical energy, Ecrit.
1 A star

with energy (in the rotating frame) above the critical energy (E ≥ Ecrit) would, naively, not

be bound to the cluster. We refer henceforth to such stars inside the cluster as “potential

escapers”

To zeroth order, models with f = f(E) and a truncation at E ≥ Ecrit give a good de-

scription of observed and N-body data (see McLaughlin & van der Marel 2005, for a detailed

discussion). However, there is evidence that potential escapers may significantly contribute

to the kinematics and structure of globular clusters. Clusters may have a surface density dis-

tribution that is enhanced near the tidal radius as compared to a standard King model (King

1966). This phenomenon has come to be known as “extra-tidal light” (Harris et al. 2002). Of

course, the choice of the energy truncation prescription in the definition of the distribution

function affects the structural and kinematical properties of the resulting configurations,

especially in the outer parts (see Davoust 1977). Smoother truncation prescriptions, such

as in Wilson (1975) models, generally produce models with extended haloes, therefore these

equilibria are often more successful than King (1966) models in reproducing the surface

brightness profiles of Galactic globular clusters in the proximity of the truncation radius.

But, extra-tidal lights could also be attributable to a population of potential escapers. The

latter view is supported by N-body simulations, which show unbound stars inside the tidal

1 Note that this is energy in a rotating frame.
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radius that significantly enhance the velocity dispersion (e.g. Küpper et al. 2010). Observa-

tions of high-energy stars (e.g. Gunn & Griffin 1979; Meylan et al. 1991; Lützgendorf et al.

2012) within the tidal radius give additional evidence for the very stars that presumably

contribute to the enhanced velocity dispersion and surface density profiles approaching the

tidal radius.

There is, therefore, a need for a model that can successfully describe the presence of

stable orbits at E ≥ Ecrit. In §2, we give a brief description of the process of building

a snapshot model. In §3 we outline the relevant analytic background studies of potential

excapers. In §4, we describe our exploration into the important manifold identifying stable

orbits for stars with E ≥ Ecrit. We make a first attempt at calculating a density distribution

in §5. In §6, we discuss our goals for future work on this topic, and in §7 we give a summary

of our findings.

2 HOW TO BUILD A “SNAPSHOT” MODEL

The first step toward building a successful snapshot model is to construct a physically

motivated distribution function, f , that is a function of some integrals of motion. The

prescribed distribution function must satisfy the collisionless Boltzmann equation,

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0, (1)

where x and v are the coordinate and velocity vectors, and Φ is the underlying potential.

As we are interested only in a time-independent model, the first term of eqn. 1 is neglected.

One can determine the associated number density for the globular cluster by taking the

0th moment of f ,

ρ(x) =

∫
f(x,v)d3v. (2)

The self-consistent potential can be calculated via the Poisson’s equation,

∇2Φ = 4πGρ(x), (3)

to get a complete density-potential pair.

A convenient approach to the solution of the Poisson’s equation, especially in the case

of non-spherical, anisotropic models, is often based on an iteration method, starting from a

seed solution (i.e., an initial guess) for the potential Φ (e.g., Prendergast & Tomer 1970).

Higher order moments of the distribution function in velocity space define the mean veocity
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vector,

⟨vi⟩ =
1

ρ(x, t)

∫
vi f(x,v) d3v, (4)

and the velocity dispersion tensor,

σ2
ij =

1

ρ

∫
(vi− < v >i)(vj− < v >j) f(x,v)d3v (5)

The velocity dispersion and moments of f should well describe the kinematic and struc-

tural properties of observed and simulated globular clusters.

3 IDENTIFYING POTENTIAL ESCAPERS

In order to construct a distribution function that includes the phase space contribution

of potential escapers, one must identify stable orbits for these stars in terms of integrals

of motion. Fortunately, Henon (1969, 1970) identified two relevant orbital families during

his exploration of the restricted 3-body problem in the 2D Hill’s approximation. Henon

named these families “f -orbits”, which are stable, periodic orbits, and “g3-orbits”, which

are marginally stable to unstable, periodic orbits. We will discuss these in more detail in

§3.2.

3.1 Defining a coordinate system

For the remainder of this article, it will be convenient to adopt the same coordinate system

as did Henon (1969, 1970), where the origin is placed at the center of the globular cluster

and is corotating with it. The Cartesian coordinate x̂ points radially away from the galactic

center, and ŷ points in the direction of rotation about the galactic center. For simplicity, a

radial coordinate is defined as,

r = (x2 + y2)1/2. (6)

Henon (1969) writes the 2D equations of motion as,

ẍ = 2ẏ + 3x− x

r3
, (7)

and

ÿ = −2ẋ− y

r3
. (8)

Note that if we apply this system the Jacobi integral is expressed in generalized coordi-

nates as,

E =
1

2
ẋ2 + Φeff , (9)

c⃝ 2014 RAS, MNRAS 000, 1–17



Analytic Model of a Star Cluster that Includes Potential Escapers 5

where Φeff is the effective potential

Φeff = Φ(x) + |Ωc × x|2, (10)

and Ωc is the orbital angular velocity of the cluster about the galactic center. In the 2D

Hill’s approximation, Henon (1969, 1970) defines an integral of motion,

Γ = −2E, (11)

which is expressed in our chosen coordinate system as,

Γ = 3x2 +
2

r
− ẋ2 − ẏ2. (12)

We extend our analysis to include the third dimension, so that we can explore the full

6D phase space. The ẑ component is perpendicular to the x−y plane. The radial coordinate

is therefore,

r = (x2 + y2 + z2)1/2, (13)

and the energy integral of motion becomes,

Γ = 3x2 +
2

r
− z2 − ẋ2 − ẏ2 − ż2. (14)

We also derive the equation of motion in the vertical direction to be,

z̈ = −z
(

1 +
1

r3

)
. (15)

3.2 f and g3 orbital families

For the reader’s convenience, figure 1 shows a re-print of figure 12 from Henon (1970). The

horizontal axis shows the energy integral of motion, Γ, in Henon’s 2D version. The vertical

axis shows the radial distance, x, from the center of the globular cluster. The horizontal

hashed regions are “forbidden” in the sense that their surfaces mark the zero velocity curves

of the effective potential. A star with Γ < ΓJ ≡ 34/3 ≃ 4.33, will have energy greater than

the critical energy. Initial conditions for the f - and g3-orbital families, with initial velocities

in the ŷ-direction, are shown by lines marked “f” and “g3”. Vertically hashed regions are

regions of stability, in the sense that a star launched from position x in the hashed region,

with ẋ = 0 and ẏ determined by Γ, will have a stable orbit.

We began our identification of potential escapers through an exploratory analysis of the

f - and g3-orbital families. In figure 2, we show several examples of f -orbits where we have

used the initial conditions published in table 3 of Henon (1969).2 The orbit is shown in dark

2 We have used a variable-order integrator from the scientic Python integration library (odeint), and tested our orbits to ensure

that the fractional change in Γ remains less than 10−6.
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Figure 1. Figure 12 from Henon (1970). The horizontal axis shows the 2D analogue to the Jacobi integral, Γ, while the vertical

axis shows radial distance x from the center of the globular cluster. Lines marked “f” and “g3” give the initial conditions for
the f -orbit and g3-orbital families.

blue while the tidal radius (rJ) is cyan. f -orbits with low values of Γ appear as approximate

epicycles to orbits about the galactic center with guiding center at x = y = 0. At high

values of Γ, f -orbits appear as approximate circular Keplerian orbits about the cluster. The

threshold between “low” and “high” Γ is at Γ ≈ 0, where ⟨x⟩ ≈ rJ . In Henon’s analysis,

rJ ≡ 3−1/3 ≃ 0.69. In figure 3, we plot the initial position, x0, versus the associate Γ for

both f -orbits (Henon 1969) and Keplerian orbits. We find that Keplerian orbits are a good

approximation to f -orbits when Γ ≳ 0.

A similar analysis to that shown in fig. 2 is shown in figure 4 for the unstable g3-orbital

family. The initial conditions are taken from table 1 in Henon (1970). Note that while some

of these orbits appear stable, we have only integrated them for a single orbital period in

fig. 4. Integrations of more than one period show that many of the stars in these orbits are

quickly lost as members of the globular cluster.

4 STABILITY OF POTENTIAL ESCAPERS

Identification of f - and g3-orbital families from Henon (1969, 1970) are an important first

step toward understanding the nature of potential escapers. However, in this study we aim

to understand the parameters important to orbital stability when E > Ecrit. It is reasonable

to presume that the orbits of potential escapers are filled from high to low Γ (low to high
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Figure 2. Examples of stable f -orbits with initial conditions from Henon (1969). The associated Γ and initial position, x0, for
each orbit is printed as an inset.

E), as these orbits are likely populated as the cluster relaxes. We therefore limit the current

exploration to the region of stability within fig. 1 where the initial radius is within the tidal

radius, |r0| < rJ , and Γ > 0.

Using figure 1 as a guide, we perform an empirical stability analysis. We first explore the

orbits in the x− y plane by filling the vertically hashed region of interest in fig. 1. We then

extend our analysis to the third dimension.

In figure 5 we show a sample of our stability analysis in the plane. The leftmost column

shows g3-orbits with Γ > 0. Each column to the right has an initial position, x0, that

incrementally increases by 0.1 (in Henon units), where Γ is held constant in each row.

We integrated each orbit for five orbital periods and then evaluated its stability, where an

unstable orbit has an orbital radius that is greater than the tidal radius (rmax > rJ) at some
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Figure 3. Initial position, x0, versus the associated Γ for f -orbits. Circles show the data from Henon (1969), and the dashed,
red line shows the relationship between x0 and Γ for a Keplerian orbit. Note that f -orbits are well approximated by the

Keplerian orbits for Γ ≳ 0.

time during the integration. We flagged each test orbit as unstable (red background), stable

(lavender background), or uncertain (no example shown in fig. 5).

As illustrated in figure 6, we extend our analysis to 3D by perturbing f -orbits with

an inclination. The leftmost column shows f -orbits in the plane. Each row has the same

initial launch radius and value for Γ, while the inclination (i) of the initial position vector

to the x− y plane is incrementally increased by 15◦ with each column toward the right. The

initial velocity is in the ŷ-direction with amplitude determined by Γ. As expected, stars with

E ≳ Ecrit tend to become unstable when i > 90◦, as these are pro-grade orbits3.

The stability analysis for fig. 6 has colours with the same meaning as in fig. 5 with

the addition of a third flag for uncertain stability (yellow background). Each orbit was also

plotted in the x− z and y − z planes, but these are not shown here.

4.1 Stability in a manifold of approximate integrals of motion

For every orbit we evaluated, the value of Γ (the energy integral of motion) is known. The

initial amplitude of the total angular momentum, |L|, and the value of its component in the ẑ-

direction, Lz, can be evaluated. Each orbit is launched from y0 = 0 and with v0 = v0ŷ = vy,0.

Therefore, an orbit with a given Γ, radius r, and inclination i, will have x0 = r cos i and

z0 = −r sin i. Eqn. 14 can be used to solve for vy,0. In this scheme, |L| = r |vy,0| and

3 Pro-grade orbits will have a Coriolis force away from the cluster.
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Figure 4. Examples of stable g3-orbits with initial conditions from Henon (1970). The associated Γ and initial position, x0,
for each orbit is printed as an inset.

Lz = x0 vy,0. As long as the orbits of potential escapers (stable orbits) can be treated as

perturbations to Keplerian motions, Lz and |L| can be treated as approximate integrals of

motion.

The left panel of fig. 7 shows a scatter plot of Lz vs Γ for each orbit we evaluated for

stability. Plus and cross signs are orbits in the x− y plane (two symbols are used for visual

differentiation only and have no physical meaning), and circles are for inclined f -orbits. The
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Figure 5. g3-orbits with initial conditions from Henon (1970) are in the leftmost column. Γ is held constant in each row, where
the value of x0 is increased by 0.1 (in Henon units) with each step to the right. The associated Γ and initial position, x0, for
each orbit is printed as an inset. The orbital trajectory is plotted in purple. In the leftmost column, the cyan circle shows the

tidal radius. For reference, the trajectory of the approximate f -orbit associated with a given Γ (derived from a line of best fit
to the Henon data) is plotted in red. Note that some approximated f -orbits are slightly perturbed, and the overlap of their
path over several orbital periods appears as a thick, red line. The stability of each orbit is determined empirically, where a red
background indicates an unstable orbit and a lavender background indicates stability.
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Figure 6. Stable f -orbits with initial conditions from Henon (1969) are in the leftmost column. The initial radius and Γ are
held constant in each row, where the inclination of the orbit, i, is increased by 15◦ with each step to the right. The associated Γ

and inclination for each orbit is printed in the inset. The orbital trajectory is plotted in purple. The cyan circle shows the tidal
radius. The stability of each orbit is determined empirically, where a red background indicates an unstable orbit, a lavender
background indicates stability, and a yellow background indicates uncertain stability.

green line marks f -orbits (analogous to the curve for f -orbits in fig. 1). The red line marks

the angular momentum for a star of given Γ that is launched in the x − y plane from rJ

with velocity in the ŷ-direction as determined by Γ. We will henceforth call this the lower

boundary for Lz, or Lz,low, as this appears to be a good delimitation for stability. The upper

boundary for Lz, or Lz,up, is shown as a magenta line. This is a line of “best fit”, in the

sense that we have simply placed a line that roughly separates stable from unstable orbits

for Γ < 2.5. For ΓJ > Γ ≥ 2.5, we assume Lz,up = 0, in order to eliminate pro-grade orbits.

c⃝ 2014 RAS, MNRAS 000, 1–17



12 Kathryne J. Daniel, Douglas Heggie, and Anna Lisa Varri

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0

Lz

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Γ

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0

|L|
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Γ

Figure 7. Scatter plots of Lz vs Γ and |L| vs Γ for all orbits evaluated for stability. Cross and plus symbols indicate orbits in
the x − y plane, and circles indicate inclined f -orbits. Colour corresponds to the stability of the orbit (green is stable, red is

unstable, yellow is undetermined stability).
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Figure 8. Unstable orbits within the range 2.5 ≤ Γ ≤ 4 that meet our criterion (Lz,low(Γ) < Lz ≤ Lz,up(Γ)). Should our

criterion be viable, the flagged percent (nbad) would be nearly zero for all Γ.

Below, we test the validity of our characterisation of stability as being defined by the region

where Lz,low(Γ) < Lz ≤ Lz,up(Γ).

The right panel of fig. 7 is a scatter plot of |L| vs Γ where the the colours and symbols have

the same meanings as in the left panel. It is tempting to consider the very tight clustering

of |L| at high Γ as an indication of stability. However, the overlap in stable and unstable

orbits in this manifold for lower values of Γ renders the evaluation of |L| to be less useful

than Lz given the relatively clean separation of stability in the Lz − Γ manifold.

We test our characterisation of orbital stability in the Lz−Γ manifold through extensive
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Figure 9. Linearly interpolated heat map of stability for orbits that meet our criterion. Blue indicates a region where our
evaluation of stability is correct, where red indicates a poor evaluation of stability. Note that the enhanced region in the lower

left may be noise that is amplified by the interpolation, while the region to the lower right makes a clear prediction that our
criterion in this region are inadequate.

Monte Carlo simulations. We ran 1000 random realisations of initial conditions for each

value of Γ between 2.5 − 4 in increments of ∆Γ = 0.1. For each realisation, we randomly

select an amplitude for the initial radius that is less than the tidal radius (r0 ≤ rJ), and

then randomly select the vector direction of the initial position. Using the value of Γ, we

solve for the amplitude of the velocity vector and randomly assign the direction. Orbits with

Lz,low(Γ) < Lz ≤ Lz,up(Γ) are integrated for several orbital periods, while orbits that do

not meet this criterion are discarded. Orbits that have |r| > rJ at some point during their

integration are flagged as unstable. In principle, should our criteria for stability be well posed,

we would have zero flagged orbits in these simulations. Figure 8 shows the percentage of

flagged (unstable) orbits as a function of Γ (nbad). The value of nbad increases nearly linearly

with decreasing Γ.

We investigate our evaluation of the stability criterion in figure 9. Each realisation of

the Monte Carlo simulation is plotted as a circle, where blue signifies a stable orbit and red

signifies an unstable (flagged) orbit. A linear interpolation of the scatter plot is shown as a

heat map, where blue indicates a region where our evaluation of stability well describes the
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data. The enhanced (green) region at Lz ∼ −1 and 2.5 < Γ ≲ 3.1 has two explanations.

First, this region is close to the boundary of our assumed stable region, and so it may be

expected that our stability criterion give a poor prediction for stability. Second, there are

very few data points sampled in this region and the linear interpolation, which is implicit

in the production of the heat map, is slightly noisy. In the region where Lz approaches zero,

and 2.5 < Γ ≲ 3.5, there is a strong enhancement indicating that our line of “best fit” for

Lz,up is a poorly evaluated marker of stability.

In future work, we will change Lz,up to exclude this region from our evaluation of the

region of stability in the Lz − Γ manifold with the expectation that the value of nbad will

decrease for values of Γ ≲ 3.5. For the current study, however, we use Γ = 2.5 as a lower

limit to the region of Γ for which we will evaluate the density of potential escapers.

5 CONSTRUCTION OF THE MODEL

5.1 Choice of the distribution function

For simplicity, we will first consider a model defined by a constant distribution function

over the domain set by the manifold identified in the previous section. The construction of

models based on more complicated analytical expressions for the distribution function (e.g.,

lowered Maxwellian distribution functions) will be explored in the near future.

5.2 Density determination

In order to calculate the density associated with the distribution function, it is convenient

to use a partition of the phase space in terms of the selected approximated integrals of the

motion, Γ and Lz. We can then define meaningful limits of integration within the manifold

defining the domain of the distribution function.

The integral over velocity space (eqn. 2) is expressed in cylindrical polar coordinates as

d3v = dvϕ dvR dvz. We can uniquely describe the same space by defining a new coordinate,

v⊥ = (v2R + v2z)1/2, and an accompanying angle, ψ, that can be integrated over 2π. This

transformation gives,

ρ(x) = 2π

∫
v⊥ dv⊥

∫
dvϕ f. (16)

We can further transform the variables of integration into Γ − Lz space using eqns. 10-11,
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so that the Jacobian,

J =
∂(Γ, Lz)

∂(v⊥, vϕ)
= 2v⊥R, (17)

and,

ρ(x) =
πf

R

∫
dΓ

∫
dLz, (18)

where R is the radial cylindrical-polar coordinate.

We use eqns. 9-11 and the relation Lz = Rvϕ, to show that,

Γ = −2Φeff − ẋ2, (19)

and thus expressing Γ in terms of the generalized potential. We can set the limits of

integration over dΓ via the physically motivated argument that potential escapers have

−∞ < Γ ≤ min{−2Φeff,J ,−2Φeff}, where Φeff,J is the value of Φeff evaluated at the

saddle point located at (x, y) = (−rJ , 0) in Henon’s Cartesian coordinate system.

The limits of integration over dLz can be expressed in terms of Φeff by using eqn. 19, to

show that vϕ = −R(−Γ − 2Φeff )1/2 when v⊥ = 0. From §4.1, the lower limit of integration

over dLz is therefore max{−rJ(−Γ − 2Φeff,J)1/2,−R(−Γ − 2Φeff )1/2}. By expressing our

line of “best fit” as some function, F (Γ), then the upper limit of integration over dLz is

min{0, F (Γ)}. In terms of the boundary conditions set by this study, the density of potential

escapers would be,

ρ(x) =
πf

R

∫ min{−2Φeff,J ,−2Φeff}

−∞
dΓ

∫ min{0,F (Γ)}

max{−rJ (−Γ−2Φeff,J )1/2,−R(−Γ−2Φeff )1/2}
dLz. (20)

We can further assume that the region of interest in the Γ −  Lz manifold is populated

from high to low values of Γ, and therefore, we set the lower limit of the integral over dΓ to

some value ξ ≥ 0. By assigning a value of ξ such that min{0, F (Γ)} = 0, eqn. 20 becomes,

ρ(x) =
πf

R

∫ min{−2Φeff,J ,−2Φeff}

ξ

dΓ

∫ 0

max{−rJ (−Γ−2Φeff,J )1/2,−R(−Γ−2Φeff )1/2}
dLz. (21)

The integral over dLz in eqn. 21 is just,

ρ(x) =
πf

R

∫ min{−2Φeff,J ,−2Φeff}

ξ

dΓ min{rJ(−Γ − 2Φeff,J)1/2, R(−Γ − 2Φeff )1/2}. (22)

One would use the first expression in the integration over dΓ, (i.e., rJ(−Γ − 2Φeff,J)1/2) in

the case that,

rJ(−Γ − 2Φeff,J)1/2 ≤ R(−Γ − 2Φeff )1/2

Γ ≥ −2Φeff,J + 2Φeff (R/rJ)2

1 − (R/rJ)2

(23)

It is now possible to attain an approximation of the density once one assumes an underly-

ing potential. A seed prescription for the analytic evaluation of ρ(x), the numerical solution
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for the self-consistent potential, and resulting expression for the distribution function will

be addressed in the near future.

6 FUTURE WORK

As a continuation of this work, we will first need to determine a lower limit for Lz that

better describes the region of stability in the Lz − Γ manifold. This will enable us to place

meaningful limits of integration for our first evaluation of the density (e.g. §5). We will also

explore the possibility of a third integral of the motion (e.g., |L|), in the definition of the

boundary of the manifold.

As outlined in §2, we will use this initial evaluation of the density to improve our definition

of orbits of stable potential escapers and hence the analytical expression of the distribution

function, f , as a function of the 6D phase-space in a self-consistent potential. We will continue

to refine f(x,v) with evaluations of higher moments of the distribution function (eqns. 4 & 5)

and their fit to N-body simulations and observational data.

7 SUMMARY

This report describes our initial exploration into building a “snapshot” model that includes

potential escapers in a star cluster. A continuation of this work will be published in the near

future.

We first identified the f - and g3-type orbital families (Henon 1969, 1970), which have

E ≥ Ecrit. We found that the motions of a star in an f -type orbit are well described by

Keplerian motion when the star is within the tidal radius.

Under the assumption that the motions of potential escapers can be treated as perturba-

tions to Keplerian orbits, we identify three integrals of motion: Γ, |L|, and Lz, corresponding

to the energy, total angular momentum and the ẑ component of the angular momentum.

Via an empirical analysis of orbital stability within the space defined by the above integrals

of motion, we find the domain within the Γ − Lz manifold that constrains orbital stability

for stars with E > Ecrit (i.e., potential escapers).

Our goal is to find a self-consistent model that includes potential escapers. As a first

step, we calculate an associated density by expressing the 0th order moment of a constant

distribution function in terms of the above identified manifold, with limits of integration

defined by the domain that encloses stable orbits.
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In future work, we will use our initial calculation for the density to numerically calculate

the associated, self-consistent potential. We will iteratively refine our model with evaluations

of higher moments of the distribution function, and through their fit to N-body simulations

and observational data.
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Küpper A. H. W., Kroupa P., Baumgardt H., Heggie D. C., 2010, MNRAS, 407, 2241
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