
Stephen Pardy!
University of Wisconsin - Madison!
ISIMA advisor: Andreas Küpper

Image: Spitzer - Caltech

Modeling the Tidal Stream of NGC 5466

ISIMA - Toronto : August 6, 2014



Outline

• Theory - Escapers & Streakline Method!

• Data - SDSS, Literature Values, Radial Velocities!

• Interpretation - Halo Parameters & Cluster Orbit

• Motivation (i.e. why should you care?)



Carlos Vera-Ciro

Milky Way Mass is Poorly Constrained



Dark Matter Halos
Spherical Models
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Dark Matter Halos
Spherical Models

Volgelsberger et al. 2014 Core vs. Cusp



Dark Matter Halos
Oblate, Prolate, and Tri-axial

http://www.universetoday.com/;!
Law & Majewski 2010 Tomas Vydra and Daniel Havelka!

Triaxial Oblate Prolate

http://www.universetoday.com/


Disk and Bulge Models
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Hernquist (1990) spherical bulge:

Miyamoto & Nagai (1975) disk:



Lagrange Points and Escapers

Küpper et al. 2010

Stars escape: !
• From Lagrange radius (King 1962)!

• Küpper et al. 2012 set minimum radius to 
prevent recapture!

• At low velocities !
• Modeled as equal the cluster 

central velocity plus a small offset!
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Küpper et al. 2012

Lagrange Points and Escapers

• Stars on epicyclic orbits 
create over-densities!

!
• Cluster is stretched and 

contracted as it goes from 
pericenter to apocenter!

!
• Reproduce NBody results 

using streaklines!
• Restricted 3-Body integration - 

Fast!!
• Test particles are released from 

cluster at set intervals

Pal 5 NGC 5466



Ana Bonaca

Fast Forward Modeling



Palomar 5

Sagittarius 
Dwarf

NGC 5466

Koposov et al. 2012; Law & Majewski 2010;!
Gibbons et al. 2014 + Many others

Grillmair & Johnson 2006; Lux et al. 2013;!

Fellhauer et al. 2007 ; Belokurov et al. 2006!

+ Many others 

Küpper et al. 2014 (in prep);  
Lux et al. 2013; Dehnen et al. 2004!
Odenkirchen et al. 2003 + Many others!
 

Tidal Streams as Probes of the Galactic Potential



NGC 5466 Stream

Neural networks 
detected 4º stream!
Belokurov et al. 2006

Tidal Radius ~21arcmin!
Lehmann & Scholz 1997



Grillmair & Johnson 06 ; Lux+12

Tentative 45º stream 

NGC 5466 Stream



Radial velocity measurements

Data: Jay Strader

• 309 bright stars 
observed !

• 63 cluster members !
• 5 stream members!



Radial velocity measurements



Streakline method used to model Palomar 5

Pearson+14



2 PEARSON ET AL.
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and a bulge described by a Hernquist spheroid (Hernquist
1990):
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where M

disk

= 1011M�, a = 6.5 kpc, b = 0.26 kpc,
M

bulge

= 3.4 ⇥ 1010M� and c = 0.7 kpc. The distance
to the Sun is fixed to R� = 8.3 kpc, and the circular
velocity of the Sun’s motion in our Galaxy is set to ~

V� =
(11.1, 258.1, 7.3) km/s (Gillessen et al. 2009, Schönrich
et al. 2010, Reid et al. 2014, Küpper et al., in prep.).
We compute the two di↵erent dark matter halo poten-
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where q1 and q

z

are the ratios between where the equipo-
tential contours intersect the x/y and z/y axes respec-
tively, q2 = 1.0 by definition and � is the rotation angle
of x axis around the z from the Sun-Galactic center line.
We set v

halo

= 121.9 km/s, r
halo

= 12.0 kpc, and we use
the same parameters as LM10 for the triaxial potential:
� = 97 deg, q1= 1.38, q

z

= 1.36.
For the spherical potential, we set q1= 1.0, q2 = 1.0,

and q

z

= 1.0.

2.2. The Streakline method

To create model streams along a given orbit in a spe-
cific potential, we use the streakline method outlined
in Küpper et al. (2012) and Lane et al. (2012). In
Bonaca et al. (2014), it is demonstrated that the streak-

line method is a time-e�cient way of generating realis-
tic streams that match the morphology of much more
time-consuming N -body models. Streakline models are
restricted three-body models of streams. They assume
that stars escape from the cluster at the tidal radius
(King 1962),
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at a constant rate. Here, M is the mass of the cluster (M
= 15000M�; Küpper et al., in prep.), ⌦ is the instanta-
neous angular velocity of the cluster with respect to the
galactic center, � is the galactic potential, and R is the
cluster’s instantaneous galactocentric distance. We ap-
ply a random Gaussian spatial o↵set with a width of 0.25
⇥ r

t

around the Lagrangian points at the time of escape

(Lane et al. 2012, Gibbons et al. 2014). Moreover, the
stars are given velocities matching the angular velocity
of the cluster plus an additional random Gaussian veloc-
ity o↵set with a dispersion of 1 km/s, comparable to the
velocity dispersion of the cluster.
We fix the sky position (RA = 229.0�, Dec = -0.111�),

radial velocity (v
r

= -58.7 km/s; Odenkirchen et al.
2002), and distance (d = 23.6 kpc; Dotter et al. 2011, we
explore the e↵ect of varying distance in Section 4). The
only free parameters are the two proper motion compo-
nents, which we vary in order to find the most likely orbit
in each potential. For a given choice of phase-space co-
ordinates, we integrate the orbit backward for 6 Gyr and
subsequently integrate it forward again while producing
the streakline model streams. The stars are released uni-
formly in time from the Lagrange points and integrated
to the present day, where throughout the integration the
stars feel the gravity of the cluster, but not the other
streakline stars.

2.3. Comparison to observational data

For a given orbit within a specified potential, we com-
pare the streakline model to 24 over-dense regions of Pal
5 stream stars (Balbinot et al. 2011, Küpper et al., in
prep.) from the SDSS data through the log-likelihood
(LL):
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Here NOD is the number of over-densities, d

ij

is the dis-
tance from each model point to the j-th over-density,
and � is a numerical constant set to � = 10�5. Conse-
quently, the maximum value of LL is the streakline model
stream for which the density around the actual observed
over densities from SDSS is maximized.
Comparing model streams to over-densities is physi-

cally motivated by the predicted epicyclic motion of stars
evaporating from clusters (Küpper et al. 2010). There
could be other explanations for inhomogeneities in tidal
streams (e.g., due to variations in the mass loss rate,
perturbations by dark matter subhalos, or variations in
the depth of the observed data; e.g., Ngan & Carlberg
(2014)). However, the primary purpose of our likelihood
function is to assess the alignment of our generated mod-
els with the observed streams. An alternative approach
would be to instead measure the smallest distance of each
point from the centroid of the stream, but this e↵ectively
makes another assumption i.e. that the density along the
stream is constant.
Odenkirchen et al. (2009) measured 17 radial velocities

of stars in Pal 5’s tidal streams. When these are included
in the assessment of the likelihoods, the LL function is:

LLtotal = logLOD + logL
vr

(9)

where logL
vr

has the same form as Equation 8, but in-
cludes a comparison between the radial velocities of our
models with the 17 radial velocities observed for Pal 5.
We have fixed all potential parameters in both poten-

tials, and can thus compare the likelihoods between the
two potential forms.
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in each potential. For a given choice of phase-space co-
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the streakline model streams. The stars are released uni-
formly in time from the Lagrange points and integrated
to the present day, where throughout the integration the
stars feel the gravity of the cluster, but not the other
streakline stars.
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prep.) from the SDSS data through the log-likelihood
(LL):

LLOD =
NODX

j

log

 
1

Nmodel

N

modelX

i

exp
� 1

2

✓
d2ij

�d2

◆

+�

!

(8)
Here NOD is the number of over-densities, d

ij

is the dis-
tance from each model point to the j-th over-density,
and � is a numerical constant set to � = 10�5. Conse-
quently, the maximum value of LL is the streakline model
stream for which the density around the actual observed
over densities from SDSS is maximized.
Comparing model streams to over-densities is physi-

cally motivated by the predicted epicyclic motion of stars
evaporating from clusters (Küpper et al. 2010). There
could be other explanations for inhomogeneities in tidal
streams (e.g., due to variations in the mass loss rate,
perturbations by dark matter subhalos, or variations in
the depth of the observed data; e.g., Ngan & Carlberg
(2014)). However, the primary purpose of our likelihood
function is to assess the alignment of our generated mod-
els with the observed streams. An alternative approach
would be to instead measure the smallest distance of each
point from the centroid of the stream, but this e↵ectively
makes another assumption i.e. that the density along the
stream is constant.
Odenkirchen et al. (2009) measured 17 radial velocities

of stars in Pal 5’s tidal streams. When these are included
in the assessment of the likelihoods, the LL function is:

LLtotal = logLOD + logL
vr

(9)

where logL
vr

has the same form as Equation 8, but in-
cludes a comparison between the radial velocities of our
models with the 17 radial velocities observed for Pal 5.
We have fixed all potential parameters in both poten-

tials, and can thus compare the likelihoods between the
two potential forms.

Best fit values use log-likelihood !
- test particles near data add weight to the model, but…!
- data with few test particles do not significantly hurt model



Animation: Victor Powell & Lewis Lehe!
setosa.io

Markov chains move 
between two (or many) states 
with a finite probability

Markov Chain Monte Carlo
Draw new model randomly and 
test log likelihood!
• If better than current - move!
• If worse than current - move with 

some finite probability

Modeling with: emcee 
http://dan.iel.fm/emcee/

http://dan.iel.fm/emcee/


Markov Chain Monte Carlo



Bimodal 
distribution in 
proper 
motions

Unconstrained distances

Early Results showed poor 
constraints of many orbital 
parameters



MCMC Priors
Parameter Distribution Values Reference(s)
Halo Mass Fixed 1.58 Küpper+14

Rh Fixed 37.9 kpc Küpper+14
Distance Fixed 16.0 kpc Sarajedini+07

Cluster Mass Fixed {50, 100, 150, 200} Pryor+91; Harris96

Rsun Fixed 8.302 kpc Küpper+14
VLSR Fixed 242.05 km s Küpper+14

Halo Flattening Flat [0.5, 1.5) Küpper+14
μ𝜶Cos(𝝳) Flat [-0.5, -0.3) mas yr Harris96; Dinescu+97

μ𝝳 Flat [-2, 0) mas yr Harris96; Dinescu+97

Tpast Flat [-5, -4) Gyr —



μ𝝳 = -0.89 ± 0.36 mas yr-1

q = 0.97 ± 0.23 
μ𝜶Cos(𝝳) = -4.7 ± 0.54 mas yr-1 



μ𝝳 = -0.89 ± 0.36 mas yr-1

q = 0.97 ± 0.23 
μ𝜶Cos(𝝳) = -4.7 ± 0.54 mas yr-1 



Comparison with Data



Best fit orbit!
• Apocenter = 36 kpc!
• Pericenter = 4 kpc



Conclusions & Future Work
• Modeling tidal streams can constrain models of the dark 

matter halo !
• Streakline method and MCMC can efficiently search over 

large parameter space!
• Long thin streams are most sensitive to the orbital data and to 

halo flattening - other parameters require good radial velocity 
data to constrain!

!
• Gather additional (and better) data for NGC 5466!
• Model all tidal streams (Sag., Pal. 5, NGC 5466) 

simultaneously!
!
• Tighten constraints on halo parameters!
• Include tests for core/cusp DM profile!


