## Stephen Pardy

University of Wisconsin - Madison ISIMA advisor: Andreas Küpper

## Modeling the Tidal Stream of NGC 5466

ISIMA - Toronto : August 6, 2014

Image: Spitzer - Caltech

# Outline

- $\rightarrow$  Motivation (i.e. why should you care?)
  - Theory Escapers & Streakline Method
  - Data SDSS, Literature Values, Radial Velocities
  - Interpretation Halo Parameters & Cluster Orbit





Spherical Models



# Dark Matter Halos Spherical Models



# Dark Matter Halos

### Oblate, Prolate, and Tri-axial



Tomas Vydra and Daniel Havelka

http://www.universetoday.com/; Law & Majewski 2010

# Disk and Bulge Models

# Hernquist (1990) spherical bulge: $\Phi_{bulge} = -\frac{GM_{bulge}}{R+a}$

Miyamoto & Nagai (1975) disk:

$$\Phi_{disk} = -\frac{GM_{disk}}{\sqrt{x^2 + y^2 + (b + \sqrt{z^2 + c^2})^2}}$$

# Lagrange Points and Escapers



Küpper et al. 2010

$$\boldsymbol{r_L} = \left(\frac{GM_c}{\Omega_c^2 - \partial^2 \Phi / \partial R_c^2}\right)^{1/3}$$

Stars escape:

- From Lagrange radius (King 1962)
  - Küpper et al. 2012 set minimum radius to prevent recapture
- At low velocities
  - Modeled as equal the cluster central velocity plus a small offset

$$R^{i} = \frac{R_{c}^{i}}{R_{c}} \times (R_{c} \mp r_{L}) \mp \delta r^{i}$$
$$V^{i} = \frac{V_{c}^{i}}{V_{c}} \times (V_{c} \pm \Omega_{L} x_{L}) \pm \delta v^{i}$$

# Lagrange Points and Escapers

- Stars on epicyclic orbits create over-densities
- Cluster is stretched and contracted as it goes from pericenter to apocenter
- Reproduce NBody results using streaklines
  - Restricted 3-Body integration -Fast!
  - Test particles are released from cluster at set intervals



# Fast Forward Modeling



## Tidal Streams as Probes of the Galactic Potential



## NGC 5466 Stream

# Neural networks detected 4° stream

Belokurov et al. 2006

Tidal Radius ~21arcmin

Lehmann & Scholz 1997



## NGC 5466 Stream Grillmair & Johnson 06 ; Lux+12



Tentative 45° stream

#### Radial velocity measurements

Data: Jay Strader

- 309 bright stars observed
- 63 cluster members
- 5 stream members



#### Radial velocity measurements



#### Streakline method used to model Palomar 5



Pearson+14

$$LL_{OD} = \sum_{j}^{N_{OD}} \log \left( \frac{1}{N_{\text{model}}} \sum_{i}^{N_{\text{model}}} \exp^{-\frac{1}{2} \left( \frac{d_{ij}^2}{\Delta d^2} \right)} + \Delta \right)$$

Best fit values use log-likelihood

- test particles near data add weight to the model, but...
- data with few test particles do not significantly hurt model

$$LL_{total} = logL_{OD} + logL_{v_r}$$

## Markov Chain Monte Carlo

Modeling with: *emcee* <u>http://dan.iel.fm/emcee/</u>

Markov chains move between two (or many) states with a finite probability

![](_page_17_Figure_3.jpeg)

Animation: Victor Powell & Lewis Lehe setosa.io

Draw new model randomly and test log likelihood

- If better than current move
- If worse than current move with some finite probability

![](_page_17_Figure_8.jpeg)

![](_page_18_Figure_0.jpeg)

 $\mathsf{R}_{Halo}$  [pc]

![](_page_19_Figure_0.jpeg)

# MCMC Priors

| Parameter       | Distribution | Values              | Reference(s)         |
|-----------------|--------------|---------------------|----------------------|
| Halo Mass       | Fixed        | 1.58                | Küpper+14            |
| Rh              | Fixed        | 37.9 kpc            | Küpper+14            |
| Distance        | Fixed        | 16.0 kpc            | Sarajedini+07        |
| Cluster Mass    | Fixed        | {50, 100, 150, 200} | Pryor+91; Harris96   |
| Rsun            | Fixed        | 8.302 kpc           | Küpper+14            |
| VLSR            | Fixed        | 242.05 km s         | Küpper+14            |
| Halo Flattening | Flat         | [0.5, 1.5)          | Küpper+14            |
| μαCos(δ)        | Flat         | [-0.5, -0.3) mas yr | Harris96; Dinescu+97 |
| μδ              | Flat         | [-2, 0) mas yr      | Harris96; Dinescu+97 |
| Tpast           | Flat         | [-5, -4) Gyr        |                      |

![](_page_21_Figure_0.jpeg)

 $\mu_{\delta}$  [arcsec/yr]

 $\mu_{\alpha}\cos(\delta)$  [arcsec/yr]

![](_page_22_Figure_0.jpeg)

#### **Comparison with Data**

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

## Best fit orbit

- Apocenter = 36 kpc
- Pericenter = 4 kpc

![](_page_24_Figure_4.jpeg)

# Conclusions & Future Work

- Modeling tidal streams can constrain models of the dark matter halo
- Streakline method and MCMC can efficiently search over large parameter space
- Long thin streams are most sensitive to the orbital data and to halo flattening - other parameters require good radial velocity data to constrain
- Gather additional (and better) data for NGC 5466
- Model all tidal streams (Sag., Pal. 5, NGC 5466) simultaneously
  - Tighten constraints on halo parameters
  - Include tests for core/cusp DM profile