Modeling the Debris of Globular Clusters

Andreas Küpper

Since the 70's it is apparent that spiral galaxies have some form of dark halo component

The rotation curve of the Galactic disk requires some form of dark component

Dark matter halos in LCDM are complex and mostly triaxial structures

Tidal streams help us understand the parts of the Galaxy which are dark in more detail

Bonaca, Geha & Kallivayalil (2012)

Tidal streams help us understand the parts of the Galaxy which are dark in more detail

Grillmair (2014)

ŋ;

Sagittarius was the first stream used for probing the Milky Way's dark halo

Models of the stream prefer a triaxial halo with the intermediate axis aligned with the disk z-axis

Different streams probe different parts of the Galaxy

Modeling of Streams

Orbit Fitting Orbit Fitting with some offset Restricted threebody

Collisionless simulations

Direct N-body simulations

low accuracy	fast
high accuracy	slow

Modeling of Streams

Orbit Fitting	low accuracy	fast
Orbit Fitting with some offset		
Restricted three- body	Streakline	modeling
Collisionless simulations		
Direct N-body simulations	high accuracy	slow

Stars escape through the Lagrange points with low offset velocities

Just, Berczik, Petrov & Ernst (2009)

Simplest case: circular orbit

Star clusters produce a continuous stream of stars

Simulation from Küpper, Kroupa, Baumgardt & Heggie (2010)

Stream overdensities also form in streams of clusters on eccentric orbits

Ideally we would like to make a full N-body run for each parameter combination

Simulation from Küpper, Kroupa, Baumgardt & Heggie (2010)

A streakline visualizes the flow of particles in a stream due to progenitor orbit and surrounding medium

Streakline models approximate full N-body simulations at low computational cost

Streakline models approximate full N-body simulations at low computational cost

Palomar 5 is a low-mass, low-density clusters in the halo of the Milky Way high above the Galactic disk

- ▶ M_V = -5.17 mag
- ▶ r_h = 20-30 p
- central density: 1 star/pc²
- ▶ R_{sun} = 23.6 kpc
- ▶ R_{GC} = 18.6 kpc, z =16.9 kpc
- extremely depleted in lowmass stars

Palomar 5 is a low-mass, low-density clusters in the halo of the Milky Way high above the Galactic disk

Its tidal tails were detected in the first data release of SDSS

In the last data release it can be traced for > 20 deg, which corresponds to more than 8 kpc

17 radial velocities have been measured along the tidal stream

17 radial velocities have been measured along the tidal stream

Fitting orbits to streams is highly degenerate and produces biased results

Streakline models make extensive parameter-space search in arbitrary potentials possible

Produce a streakline model and compare it to the data via an appropriate likelihood function

The Palomar 5 stream is very thin - thinner than expected in a very triaxial potential

The Palomar 5 stream is very thin - thinner than expected in a very triaxial potential

The Palomar 5 stream is very thin - thinner than expected in a very triaxial potential

Use MCMC to walk through parameter space

Our forward modeling has 11 free parameters

NFW halo scale mass

distance Sun-Palomar 5

NFW halo scale radius

NFW halo flattening

distance Sun-Galactic center

solar transverse velocity

2 proper motion components

present-day mass of Palomar 5

mean mass-loss rate of Palomar 5

integration time

Other methods use tracers in the Galactic halo

Palomar 5 measurement in excellent agreement with other methods

Halo shape may be slightly oblate

★ Globular cluster streams are high-precision scales

★ Streakline models make large parameter-space studies possible

★ Dark halo is close to being spherical in the inner 25 kpc

Tidal tails of star clusters are perfect detectors of dark matter substructure in the halo

Tidal tails of star cluster should be easily heated by passages of dark matter subhaloes

Carlberg (2009)

Streaklines can be used to insert tidal streams into cosmological simulations

Different orbits cause different epicyclic patterns

Epicyclic motions cause apparent overdensities and underdensities containing orbital information

We get information on additional cluster parameters independent of other methods

Solar parameters are in agreement with other methods: 8.34 kpc & 243 km/s (Reid et al. 2014)

Probabilistic modeling of Palomar 5 constrains the NFW halo scale parameters

Solar parameters are powerfully constrained

We predict proper motions of Palomar 5

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines also depends on whether the cluster mass is taken into account or not

