Thermal convection and the Sun's supergranulation

Michel Rieutord

Laboratoire d'Astrophysique de Toulouse-Tarbes, France

8 juillet 2010

Michel Rieutord Thermal convection and the Sun's supergranulation

< ロト < 同ト < ヨト < ヨト

The Sun's supergranulation

Fig.: from SOHO/MDI.

The Sun's supergranulation The spherical harmonic spectrum : SOHO/MDI

Fig.: From Hathaway et al. 2000; L_{max} =120, λ_{SG} = 36.4Mm.

A¶ ▶

The Sun's supergranulation The network in the chromosphere

Fig.: Image of the Sun at $\lambda = 393.37$ nm, Ca⁺ K3 line (Meudon observatory).

The Sun's supergranulation The network in the photosphere

Fig.: Network magnetic fields (Roudier et al. 2009).

A (1) > (1)

Problems with supergranulation

• This scale singles out of a continuum

- No consensus about its origin or models
- Obviously some connection with magnetic fields
- Is it a universal feature of stellar convection?

A (10) × (10) × (10)

Problems with supergranulation

- This scale singles out of a continuum
- No consensus about its origin or models
- Obviously some connection with magnetic fields
- Is it a universal feature of stellar convection ?

A (10) × (10) × (10)

Problems with supergranulation

- This scale singles out of a continuum
- No consensus about its origin or models
- Obviously some connection with magnetic fields
- Is it a universal feature of stellar convection ?

おとう マン・ショ

Problems with supergranulation

- This scale singles out of a continuum
- No consensus about its origin or models
- Obviously some connection with magnetic fields
- Is it a universal feature of stellar convection?

伺下 イヨト イヨト

• Simon & Leighton (1964) : $He^{2+}+e^- \rightarrow He^+$ + heat

- Cloutman (1979) : Rip currents
- Rieutord et al. (2000) : Large-scale instability of surface convection favoured by strong stratification
- Rincon & Rieutord (2003) : Linear instability from fixed-flux BC, scaled limited by \vec{B} -field.

- Simon & Leighton (1964) : $He^{2+}+e^- \rightarrow He^+$ + heat
- Cloutman (1979) : Rip currents
- Rieutord et al. (2000) : Large-scale instability of surface convection favoured by strong stratification
- Rincon & Rieutord (2003) : Linear instability from fixed-flux BC, scaled limited by \vec{B} -field.

- Simon & Leighton (1964) : $He^{2+}+e^- \rightarrow He^+$ + heat
- Cloutman (1979) : Rip currents
- Rieutord et al. (2000) : Large-scale instability of surface convection favoured by strong stratification
- Rincon & Rieutord (2003) : Linear instability from fixed-flux BC, scaled limited by \vec{B} -field.

- Simon & Leighton (1964) : $He^{2+}+e^- \rightarrow He^+$ + heat
- Cloutman (1979) : Rip currents
- Rieutord et al. (2000) : Large-scale instability of surface convection favoured by strong stratification
- Rincon & Rieutord (2003) : Linear instability from fixed-flux BC, scaled limited by \vec{B} -field.

Three attempts by DNS

- Rieutord, Ludwig et al. (2002), resol. $315^2 \times 96$ ($30^2 \times 3$ Mm³)
- Rincon, Lignières and Rieutord (2005), resol. $1024^2 \times 82$
- Stein et al. (2008), resol. 1000² × 500 (96² × 20Mm³)

Large amount of computing power but no sign of supergranulation !

Spectra from DNS

Fig.: LES within a box $48 \times 48 \times 20$ Mm³, resol. 500³ (Georgobiani et al. 2007).

イロト イヨト イヨト

Direct modeling Some ideas

Granulation forms in the thermal boundary layer where the radiative cooling is strong and the entropy gradient strong as well.

Fig.: From Bob Stein simulations.

► 4 Ξ ►

Direct modeling Some ideas (2)

- Below the thermal boundary layer, the gradient is still superadiabatic but the flux is fixed.
- Larger scales have to cope with this constraint.

Direct modeling Some ideas (2)

- Below the thermal boundary layer, the gradient is still superadiabatic but the flux is fixed.
- Larger scales have to cope with this constraint.

Thermal convection at fixed flux First results

- Hurle et al. (1966) showed that when boundaries at fully insulating, namely conductivity→ 0, then k_{crit} → 0. Unstable scales are larger and larger horizontally.
- In fact, it turns out that k = 0 is the most unstable mode. But how this result changes when a vertical magnetic field is imposed?

Thermal convection at fixed flux First results

- Hurle et al. (1966) showed that when boundaries at fully insulating, namely conductivity→ 0, then k_{crit} → 0. Unstable scales are larger and larger horizontally.
- In fact, it turns out that k = 0 is the most unstable mode. But how this result changes when a vertical magnetic field is imposed?

Fixed flux and magnetic field

This case was investigated by Rincon and Rieutord in 2003.

Michel Rieutord Thermal convection and the Sun's supergranulation

Fixed flux and magnetic field

Fig.: Critical Rayleigh number and critical wavenumber as a function of the magnetic field.

 $Q = (B_o^2 d^2)/(\mu_o \mu \eta)$ is the Chandrasekhar number.

Fixed flux and magnetic field

- This model shows that there is a critical magnetic beyond which the critical wavenumber is finite. It is characterized by the Chandrasekhar number Q=61 for a very strong stratification typical of the Sun.
- Putting solar numbers shows that the supergranulation scale is selected if the magnetic field is in the range 100G to 1kG at 5Mm deep.

Fixed flux and magnetic field

- This model shows that there is a critical magnetic beyond which the critical wavenumber is finite. It is characterized by the Chandrasekhar number Q=61 for a very strong stratification typical of the Sun.
- Putting solar numbers shows that the supergranulation scale is selected if the magnetic field is in the range 100G to 1kG at 5Mm deep.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Outlooks

The preceding numbers are in the right orders of magnitude. They suggest investigating this instability in a more realistic framework :

- Use the spherical geometry
- Introduce a slight rotation to check the drift of convective cells
- Use entropy diffusion instead of heat (temperature) diffusion.

In fact follow up the early work of Glatzmaier and Gilman 1981 and the recent work of Jones et al. 2009.

END

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ