The Mechanical Greenhouse: Turbulent Heat Burial in Hot Jupiter Atmospheres

> Andrew Youdin CITA / CfA Jonathan Mitchell UCLA

<u>http://www.cita.utoronto.ca/~youd/</u> <u>Papers/MechanicalGreenhouse.pdf</u>

deep interior

Outline

- Motivation: (Some) hot Jupiters are inflated and have thermally inverted stratospheres
- Technique: Steady-state energy balance irradiated, plane parallel atmosphere
 - Consider: Effect of turbulence in stratified (vs. convective) layers
- Findings:
 - Turbulence drives downward heat flux, can inflate planets
 - TiO hypothesis for thermal inversions in doubt, would over-inflate planets

Inflated Hot Jupiters

Ľ

- Larger transit radii than standard models, even with no core & including irradiation
- Possible solutions

• Slow cooling by thermal blanketing

 High opacity (Burrows et al. 2007), dissipation of atmospheric winds (Guillot & Showman 2002)

3LE−TR−182 D197286/WA

- Add heat to interior, dissipation at depth
 - Tidal (Bodenheimer et al. 2001), magnetic (Batygin & Stevenson 2010)

Knutson et al. (2009) 0.4 Default, P_=0.1 =0.1, P =0.3 Thermal Inversions 0.3 _=0.5, P_=0.1 κ_{extra}=0.5, P_=0.3 Transit spectra suggest hot stratospheres • Optical absorbers in upper atmosphere: 2 5 6 7 8 9 1 0 20 Wavelength (microns) TiO (Hubeny et al. 2003), Sulfur (Zahnle et al. 2009) 3000 2500 Eddy diffusion needed to overcome settling, Temperature (K) including rainout from cold traps 2000 Default, P_=0.1 κ_{extra}=0.1, P_n=0.3 1500 κ_{evtra}=0.5, Ρ_=0.1 • K_{zz} ~ 10⁷—10¹⁰ cm²/s to loft TiO κ_{extra}=0.5, P_=0.3 1000 10⁻⁴ 10⁻² 10⁰ Pressure (bar) Energetic consequences of mixing? $\rm K_{_{\rm 77}}$ required to achieve 0.8 ¹TiO at a millibar 0.8 millibar f_{TiO} at a millibar 10 µm 1 μm Spiegel 0.6 (various condensate sizes) ർ HD 209458b HD 209458b te 0.4 et al. (2009) HD 149026b HD 149026b f_{TiO} TrES-4 TrES-4 0.2 0.2 OGLE-TR-56b OGLE-TR-56b WASP-12b WASP-12b 10^9 10^{10} K_{zz} (cm² s⁻¹) 10¹³ 10⁹ 10¹³ 10⁶ 10⁸ 10¹² 10⁵ 10⁷ 10¹¹ 10¹⁴ 10⁵ 10⁶ 10⁸ 10¹² 10¹⁴ 10 10¹⁰ 10¹¹ $K_{zz} (cm^2 s^{-1})$

Basic Structure of Hot Jupiters

Radiative Convective Boundary (RCB): Where Cooling Rate Determined

Simplified, optically thick solutions

• In radiative zones, typically assume

• Fix *T*_{deep} at top of radiative region

P[bar]

100

10

1000

10⁴

10⁵

(Forced) Turbulence in Radiative Zones

Myth: Dissipation must occur in convective interior to explain inflated radii

Effect of Eddy Heat Flux (Ignoring Dissipation)

- Increasing Eddy Diffusion drives RCB (radiative convective boundary) deeper
 - Reduces cooling flux
 - Effect on T-P profile is modest
- Critical eddy diffusion, K_{zz,crit}
 - Eddy flux exceeds cooling rate associated with entropy
 - $K_{zz} > K_{zz,crit} \Rightarrow$ heat interior

Inflation

- Self-regulation: if $K_{zz} > K_{zz,crit}$
 - entropy & $K_{zz,crit}$ increase $\Rightarrow K_{zz} = K_{zz,crit}$
 - Balance eddy & radiative fluxes, i.e. heat burial & cooling
- Inversions lower T_{deep}
 - K_{zz,crit} rises, limiting inflation
 - No simple relation between inversions & inflation

Complexity

- Letting diffusion vary with height
 - K_{zz,crit} applies near RCB
 - Carnot efficiency constrains mixing at top, i.e. photosphere

$$\begin{split} K_{zz,\text{top}} &< \frac{f_* F_*}{\rho_{\text{top}} g} \\ &\approx 10^9 \ \frac{\text{cm}^2}{\text{s}} \left(\frac{P_{\text{top}}}{0.1 \text{ bar}} \right)^{-1} \left(\frac{T_{\text{deep}}}{1500 \text{ K}} \right)^5 \frac{f_*}{1\%} \end{split}$$

- Adding dissipation
 - Lowers K_{zz,crit}
 - Easier for turbulent flux to inflate

10⁻⁵

Dissipation, ϵ_o [erg/(g s)]

10⁻⁶

 10^{-4}

0.001

500

0

10⁻⁷

Implications

- Turbulent diffusion needed for TiO hypothesis appears excessive
 - Would over-inflate planets, close to nail in coffin
- Smaller turbulent fluxes can inflate hot Jupiters
 - Compliments dissipation
 - Inefficient for cold Jupiters, requires a deep stratified layer

Future Work

- Add realistic physics
 - 1st step: Compute turbulent fluxes for existing T-P profiles w/ detailed EOS & opacity (courtesy Dave Speigel)
 - Self-consistent solution: Include eddy flux in radiative-convective model
- Generalize analysis to optically thin regions: How fragile is inversion itself to mixing?
- Be useful: Develop sub-grid prescriptions for GCMs (global circulation models)

Spiegel et al. (2009)

$$F_{\text{eddy}} = -K_{zz}\rho T \frac{dS}{dz}$$
$$= -K_{zz}\rho g \left(1 - \frac{\nabla}{\nabla_{\text{ad}}}\right)$$

Summary

- Hot Jupiters have deep surface radiative layers which regulate the evolution of planetary radius
- Turbulence in radiative layers bury heat and affects the emergent spectrum
 - Helps explain inflated transit radii
 - Mixing needed for TiO to cause thermal inversions appears excessive
 - Actual profile of turbulent (and other) mixing in radiative layers? Subject to dynamical constraints (this morning's lectures)

