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Outline

• Motivation: (Some) hot Jupiters are inflated and have thermally inverted 
stratospheres

• Technique: Steady-state energy balance irradiated, plane parallel atmosphere

• Consider: Effect of turbulence in stratified (vs. convective) layers

• Findings:

• Turbulence drives downward heat flux, can inflate planets

• TiO hypothesis for thermal inversions in doubt, would over-inflate planets



Inflated Hot Jupiters

• Larger transit radii than standard models,  
even with no core & including irradiation

• Possible solutions

• Slow cooling by thermal blanketing

• High opacity (Burrows et al. 2007), 
dissipation of atmospheric winds (Guillot 
& Showman 2002) 

• Add heat to interior, dissipation at depth

• Tidal (Bodenheimer et al. 2001),  magnetic 
(Batygin & Stevenson 2010)
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Figure 12. Observed planet radius (black) compared to a range of achieved
model radii (colors) using Q′

p = 105; Q′
s = 105. Planets are ordered by

increasing incident flux according to their current observed parameters. Planets
are marked with a * if they have nonzero observed eccentricity. The range of
possible radius values under the full tidal evolution model is plotted in purple
with initial eccentricity between 0 and 0.8. The radius range for a model with
tidal–orbital evolution, but without the tidal heating into the interior of the planet
is plotted in green. The radius range for a standard stationary model without any
tidal effects is plotted in blue. The radius range for the full tidal evolution model
with a maximum initial eccentricity of 0.4 is plotted in orange. In cases, where
a nonzero eccentricity has been observed, the radius range with an eccentricity
floor equal to the observed value is shown in red.
(A color version of this figure is available in the online journal.)

instances of the evolution histories when the orbital parameters
and age all agree with the observed a, e, and age values (as
defined previously, within three error-normalized distance units
of the observed value). The age of each system is often quite
uncertain; since the possible radius values are sensitive to the
age of the system, this is a large source of uncertainty for our
results. For each planet, a range of radius values is plotted for up
to five different successful types of models. These are models
computed as discussed in Section 4.

1. The full tidal evolution model is shown in purple. In this
model, the initial eccentricity was sampled from 0 to 0.8 and
the initial semimajor axis was sampled from the observed
semimajor axis to 5 × the observed value. This is Case 4 in
Section 4.

2. The model with tidal migration but without heating is shown
in green. We perform the same search procedure as in the
full tidal model. This model is not meant to be physical, but
to give us an understanding of how tidal orbital migration
alone effects the planet’s radius. This is Case 3 in Section 4.

(a)

(b)

Figure 13. Observed planet radius (black) compared to a range of viable model
radii (colors) using Q′

p = 106.5; Q′
s = 105. Qualitatively, we observe the same

trends that were observed in Figures 12(a) and (b). A larger Q′
p value decreases

the rate of tidal effects via tides on the planet. Typically the tides on the planet
from the star are responsible for circularizing the orbit, while tides on the star
from the planet are responsible for decreasing the semi-major axis. In the larger
Q′

p case, the tidal circularization can be delayed for longer, which can make
the possible radius of the planet larger. On the other hand, a larger Q′

p also
decreases the power deposited into the planet.
(A color version of this figure is available in the online journal.)

3. The “stationary” model is shown in blue with all tidal
effects turned off. These are “standard” cooling/contraction
models, quite similar to those in Fortney et al. (2007). These
models differ slightly than the models listed in Fortney et al.
(2007) in two ways. First, these models more accurately
take into account the height of the atmosphere. Second,
some of these models explore a wider range of core sizes.
This is Case 1 in Section 4.

4. For planets, whose current observed eccentricity is less
than 0.4, the full tidal evolution with an maximum initial
eccentricity of 0.4 is plotted in orange. Because tidal heating
in the planet is directly connected to eccentricity damping,
these runs serve as a demonstration of relatively less tidal
heating due to circularization. This is a subset of Case 4
from Section 4.

5. For systems, where there is a measured nonzero eccen-
tricity, we simulate the effects of an eccentricity source by
performing the full tidal evolution with an eccentricity floor
equal to the observed value. These cases are shown in red.
This is essentially a combination of Case 4 and Case 2.

Miller et al. (2009)
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Fig. 6.— Day-side planet-star flux ratios for TrES-4 as determined from measurements of the secondary eclipse depth in the four IRAC
bandpasses (red circles). The horizontal bar and arrow at 16 µm show the 2σ upper limit on the eclipse depth in this bandpass. The
black line corresponds to the default model (no temperature inversion) with a redistribution parameter Pn = 0.1, which describes the
case where 10% of the incident energy is redistributed to the night side. The purple, blue, and green lines correspond to models with an
additional optical absorber at high altitudes (parameterized as κextra), which produces a thermal inversion around pressures of 0.001 bar
(Burrows et al. 2007, 2008). Squares show the values for these models after integrating over the Spitzer bandpasses. The high planet-star
flux ratios at 5.8 and 8.0 µm argue strongly for the presence of an inversion, as models with κextra > 0 cm2/g provide the best match at
these wavelengths. The eclipse depths in the 3.6 and 4.5 µm bandpasses are best matched by a model with relatively efficient day-night
circulation and modest additional opacity (purple model, κextra = 0.1 cm2/g and Pn = 0.3).

and 8.0 µm, respectively. In the 16 µm bandpass the
noise is a factor of 2.8 higher than the predicted contri-
bution from the photon noise of the star and background
and the detector read noise, but it is consistent with the
estimated uncertainties from the Spitzer pipeline. As a
result of this increased uncertainty, we are unable to de-
tect the secondary eclipse in the 16 µm bandpass, and
instead place an upper limit on the eclipse depth at this
wavelength.

We determine the best-fit eclipse times for the two
secondary eclipses observed using IRAC by taking the
weighted average of the best-fit eclipse times in each
bandpass. Using this method, we find that the eclipse
observed in the 3.6 and 5.8 µm bandpasses occurred
4.2 ± 3.5 minutes later than the predicted time based
on the ephemeris from Mandushev et al. (2007), where
we have neglected the light travel time in the TrES-4 sys-
tem (on the order of 30 s; Loeb 2005) and assumed the
secondary eclipse will occur exactly half an orbit after
the transit. We repeat this analysis for the eclipse ob-
served in the 4.5 and 8.0 µm bandpasses, and find that it
occurred 5.5±3.7 minutes later than predicted. If we as-
sume that the planet’s orbit remained the same over the
3.5-day period spanned by our observations (ie no per-
turbations that would change the orbital semi-major axis
or eccentricity during this time), we can combine obser-
vations in all four of the IRAC bandpasses to get a single
estimate for the best-fit eclipse time, which we find occurs
4.8± 2.6 minutes later than predicted. However, there is
an additional ±5.0 minute uncertainty in the predicted
transit time from Mandushev et al. (2007). Including
this uncertainty we find the two averaged eclipses occur

4.8±5.6 minutes later than predicted, which is consistent
with zero offset.

Our estimate for the best-fit timing offset translates
to a constraint on the orbital eccentricity e and the ar-
gument of pericenter ω of ecos(ω) = 0.0015 ± 0.0017;
the 3σ upper limit on this value is |ecos(ω)| < 0.0058,
where we have calculated the limit by integrating over
a Gaussian distribution with limits of integration that
are symmetric around zero. We selected these limits be-
cause we are interested in constraining the magnitude of
e rather than the sign of the cos(ω) term. This upper
limit means that unless the longitude of periastron ω is
close to 90◦ or 270◦, we can rule out tidal heating from
ongoing orbital circularization (Bodenheimer et al. 2001;
Liu et al. 2008) as an explanation for TrES-4’s inflated
radius. Liu et al. (2008) estimate that TrES-4 would need
to have an orbital eccentricity of approximately 0.04 to
provide the required energy; this would require |ω| to be
less than 9◦ away from the two angles listed above to be
consistent with our upper limit. Our conclusion is also
consistent with fits to the four radial velocity points from
Mandushev et al. (2007), although these points provide
a relatively weak constraint on the eccentricity.

Next we compare the secondary eclipse depths in the
four IRAC bandpasses to the predictions from atmo-
sphere models for this planet (see Fig. 6 and 7 below).
In order to fit the IRAC data and the 16-micron up-
per limit, we employed the same formalism described in
Burrows et al. (2007, 2008). Using the planet-star radius
ratio of 0.09903± 0.00088 from Mandushev et al. (2007)
and a Kurucz atmosphere model (Kurucz 1979, 1994,
2005) with an effective temperature of 6200 ± 75 K for
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Fig. 7.— Day-side pressure-temperature profiles for the four
models plotted in Fig. 6. Increasing the opacity of the optical
absorber (parameterized as κextra) increases the temperatures at
pressures less than 0.01−0.001 bars, while increasing the fraction of
heat redistributed to the night side (parameterized asPn) decreases
the temperatures around pressures of 0.01-0.1 bars. This is because
Burrows et al. (2008) parameterize the effects of energy transport
to TrES-4’s night side in these 1D models by adding a heat sink at a
pressure of 0.1 bars, which causes a drop in temperature as the day-
night circulation is turned up. See Burrows et al. (2007, 2008) for
a full description of these parameterizations and the corresponding
models.

the stellar spectrum (Sozzetti et al. 2008), we calculated
the emergent spectrum at secondary eclipse for a pair of
free parameters, Pn and κextra. Pn is the dimensionless
redistribution parameter that, in approximate fashion,
accounts for the cooling of the dayside and the warming
of the nightside by zonal winds near an optical depth of
order unity. It is a measure of the efficiency of heat re-
distribution by super-rotational hydrodynamic flows. As
the value of Pn is increased, the day side becomes cooler
and the emergent planetary flux at superior conjunction
becomes correspondingly small. κextra is the absorptive
opacity in the optical at altitude (here in cm2/g) used
to create a temperature inversion. The origin of such an
absorber is unknown, but might be due to exotic species
generated by the severe insolation regime or to TiO/VO
at altitude (Hubeny et al. 2003; Burrows et al. 2007, 2008;
Fortney et al. 2008). Concerning the latter, the coldtrap
effect should deplete the upper atmosphere of such di-
atomics, but atmospheric circulation and/or turbulence
could alter this picture by advecting these compounds
up from the lower atmosphere or removing them on the
cooler night side of the planet.

Fig. 6 and 7 show four models with varying values
for Pn and κextra. The standard non-inverted model
(κextra = 0 cm2/g) is clearly inconsistent with the ob-
served fluxes from TrES-4 at wavelengths longer than
4 µm. It is possible to match the observed 3.6 µm flux
with this model by reducing the relative fraction of the
incident energy that is redistributed to the planet’s night
side, thus increasing the day-side temperature and cor-
responding fluxes, but even this change is insufficient at
longer wavelengths. In contrast to this model, all three
models with a thermal inversion (κextra > 0 cm2/g) pro-
vide an improved match to the 5.6 and 8.0 µm fluxes.

The ratio of the 3.6 µm and 4.5 µm fluxes, another
measure of inversion (Burrows et al. 2007), is also less
than one, much lower than for models without inversions.
The best overall fit is obtained by setting Pn = 0.3 and
κextra = 0.1 cm2/g, corresponding to a case with rel-
atively efficient day-night circulation and modest addi-
tional opacity.

We note that our particular choice of planet-star ra-
dius radio and stellar effective temperature may affect
the predictions of these models. As a test we re-run
our full radiative transfer codes for the Pn = 0.3 and
κextra = 0.1 cm2/g model using stellar atmosphere mod-
els with temperatures of 6100 K and 6300 K, and mea-
sure the resulting change in the predicted eclipse depths
in the four IRAC channels. We find that decreasing the
stellar effective temperature by 100 K shifts the pre-
dicted eclipse depths in the [3.6,4.5,5.8,8.0] µm band-
passes by [−1.8%,−1.3%,−1.1%,−0.9%], while increas-
ing the temperature by 100 K results in changes of
[+1.7%,+1.4%,+1.1%,+0.9%] in these same bandpasses.
These changes are negligible relative to the 1σ uncertain-
ties of [8.0%,10.8%,22.6%,13.8%] in the measured eclipse
depths. From this test we conclude that increasing or
decreasing the effective temperature of the star by an
amount comparable to the formal uncertainties in this
quantity cannot produce a non-inverted model that is
consistent with the measured eclipse depths at longer
wavelengths, and is unlikely to alter our conclusion that
the Pn = 0.3 and κextra = 0.1 cm2/g model provides the
best fit to the data. The predicted eclipse depths scale
linearly with the planet-star area ratio, but squaring the
planet-star radius ratio from Mandushev et al. (2007)
results in a value of 0.98 ± 0.02% for this quantity; this
is a factor of 100 smaller than the typical uncertainty
contributed by the stellar effective temperature.

It is interesting to note that the same values of κextra =
0.1 cm2/g and Pn = 0.3 also provide the best fit to the
observed broadband emission spectra for HD 209458b
(Burrows et al. 2007, 2008). This would seem to im-
ply that the atmospheric circulation and relative abun-
dances of the species responsible for creating the inver-
sions in the upper atmospheres of both planets are simi-
lar, despite the higher temperatures and increased levels
of irradiation experienced by TrES-4. This is probably
an oversimplification of the problem, however, as there
are likely substantial thermal and chemical gradients be-
tween the substellar point and the day-night termina-
tor on both planets, and our observations constrain only
the hemisphere-averaged properties of the day-side at-
mosphere.

4. CONCLUSIONS

Our observations of TrES-4 at 3.6, 4.5, 5.8, 8.0, and
16.0 µm reveal that this planet has a thermal inversion
similar to the one observed for HD 209458b (Knutson
et al. 2008; Burrows et al. 2007). The presence of an
inversion in the atmosphere of TrES-4 provides support
for the idea that planets with higher levels of irradiation
are more likely to have thermal inversions, although it
does not distinguish between competing theories for the
nature of the optical absorber responsible for the creation
of the inversions.

If we are to fully understand the mysterious origin
of these temperature inversions, it will require a much

Knutson et al. (2009)
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Figure 8. Kzz required to achieve fTiO at p = 10−3 bar, for five planets, for
various condensate particle sizes. For condensates ranging from 0.1 µm (top
panel) to 10 µm (bottom panel), fTiO is plotted as a function of Kzz on each
of the five planets considered in this paper (same color scheme as in previous
figures). The magenta curve for WASP-12b is independent of particle size and
so is identical in all three panels. A horizontal black line is shown in each plot
at fTiO = 0.5 to aid the eye in identifying the value of Kzz that is required to
achieve this fiducial relative mixing ratio.
(A color version of this figure is available in the online journal.)

Table 1 also presents the value of the eddy diffusion co-
efficient Kzz that is required to maintain fTiO = 0.5 above the
dayside cold trap, for various assumed condensate sizes. 0.1 µm
particles require from Kzz ∼ 107 cm2 s−1 (in the case of OGLE-
TR-56b) to ∼109 cm2 s−1 (in the case of HD 209458b), and
these values increase roughly linearly with particle radius. 1 µm
particles require Kzz ∼ 107 to ∼1010 cm2 s−1; and 10 µm par-
ticles require Kzz ∼ 109 to ∼1011 cm2 s−1.

Since we lack constraints on both a and Kzz, our uncertainty
spans many orders of magnitude. Particle radii from 0.1 µm to
30 µm or more are not implausible, nor are values of Kzz from
102 to 109 cm2 s−1, possibly even greater. Only for a narrow
range of a–Kzz space is the upper atmosphere abundance of TiO
at all sensitive to a and Kzz. For most of parameter space, there is
either not nearly enough upper atmosphere TiO to cause thermal
inversions, or easily enough.

4. CAVEATS

What should we conclude from the results in Section 3? In
this section, we address a few additional complications of
our analysis. First, in Section 4.1, we consider how a more
sophisticated analysis would treat the single-zone model, which
considers motions only in the vertical direction, presented in
Section 2. Then, in Section 4.2, we qualitatively describe how
horizontal winds, which effectively couple the day side of a
planet to colder parts (including both the night side and the polar

Table 1
Planetary Gravitational Acceleration, Stellar Irradiation, and Required Kzz

Planet g F∗ Required Kzz

(cm s−2) (erg cm2 s−1) a = 0.1 µm 1 µm 10 µm

HD 209458b 1000 1.0 6.2 × 108 6.2 × 109 6.5 × 1010

HD 149026b 1560 2.2 2.4 × 108 2.3 × 109 2.6 × 1010

TrES-4 721 2.4 2.7 × 108 2.7 × 109 3.0 × 1010

OGLE-TR-56b 1850 5.5 1.2 × 107 2.1 × 107 8.7 × 108

WASP-12b 1090 9.3 ∗1.6 × 107 ∗1.6 × 107 ∗1.6 × 107

Notes. This table gives planetary g and stellar flux (F∗), and values of Kzz

(in cm2 s−1) required to achieve fTiO = 0.5 above the cold trap, for particle
sizes of 0.1 µm–10 µm. The asterisks in the last row are because WASP-12b
has no dayside cold trap. The required value of Kzz, therefore, is independent of
condensate particle size.

regions), influence the dayside upper atmosphere abundance of
TiO.

4.1. Caveats for the Single-Zone Model

First, the models presented in Section 3 assume either solar
abundance of TiO or no TiO, but a planet’s interior mixing ratio
of titanium might be super-solar. If so, then fTiO could be lower
than 0.5 while still maintaining a 50% solar mixing ratio of
titanium in the upper atmosphere. If a planet’s interior titanium
abundance were twice solar, for instance, fTiO could be 0.25 for
a 50% solar mixing ratio of titanium at the top of the cold trap.
Nonetheless, the band in a–Kzz space in which f changes by a
factor of 2 from, say, 0.5 to 0.25, is fairly narrow in comparison
to the range of plausible values. Even an order of magnitude
change from 0.5 to 0.05 corresponds to a fairly modest change
in Kzz of a factor of ∼3.

It is also conceivable that we dismiss too quickly the pos-
sibility that VO contributes significantly to thermal inversions.
According to Sharp & Burrows (2007), vanadium condenses
at somewhat lower temperature than titanium. All else being
equal, its cold trap would, therefore, be smaller. Still, since
even 10 times solar abundance of VO does not produce as large
a thermal inversion as has been inferred from observations of
HD 209458b it is unlikely that VO could play a key role in
producing thermal inversions.

There are two ways in which our analysis is not self-
consistent, both related to the false assumption in most of
Figures 1–5 that TiO is present at constant mixing ratio through-
out a planet’s entire atmosphere. First, we use the temperature–
pressure profiles that result from this assumption to find where
the cold traps are. Second, we also use condensation curves cal-
culated based on this assumption in finding the cold traps. In
reality, as (the non-self-consistently generated) Figure 7 demon-
strates, the mixing ratio of TiO decreases with altitude. Lower
abundance of titanium condenses at lower temperature for a
given pressure. As a result, the condensation curves of a self-
consistent analysis would have shallower slopes that reflect the
decrease in mixing ratio of TiO at lower pressures. A more so-
phisticated model would self-consistently take into account the
progressive depletion of TiO in calculating both T–P profiles
and condensation curves.

Finally, one might ask whether our use of dayside average
models could mask the presence of local conditions near the
substellar point that are hot enough not to have cold traps.
For the four planets that our model predicts have cold traps
(HD 209458b, HD 149026b, TrES-4, and OGLE-TR-56b),
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Figure 8. Kzz required to achieve fTiO at p = 10−3 bar, for five planets, for
various condensate particle sizes. For condensates ranging from 0.1 µm (top
panel) to 10 µm (bottom panel), fTiO is plotted as a function of Kzz on each
of the five planets considered in this paper (same color scheme as in previous
figures). The magenta curve for WASP-12b is independent of particle size and
so is identical in all three panels. A horizontal black line is shown in each plot
at fTiO = 0.5 to aid the eye in identifying the value of Kzz that is required to
achieve this fiducial relative mixing ratio.
(A color version of this figure is available in the online journal.)

Table 1 also presents the value of the eddy diffusion co-
efficient Kzz that is required to maintain fTiO = 0.5 above the
dayside cold trap, for various assumed condensate sizes. 0.1 µm
particles require from Kzz ∼ 107 cm2 s−1 (in the case of OGLE-
TR-56b) to ∼109 cm2 s−1 (in the case of HD 209458b), and
these values increase roughly linearly with particle radius. 1 µm
particles require Kzz ∼ 107 to ∼1010 cm2 s−1; and 10 µm par-
ticles require Kzz ∼ 109 to ∼1011 cm2 s−1.

Since we lack constraints on both a and Kzz, our uncertainty
spans many orders of magnitude. Particle radii from 0.1 µm to
30 µm or more are not implausible, nor are values of Kzz from
102 to 109 cm2 s−1, possibly even greater. Only for a narrow
range of a–Kzz space is the upper atmosphere abundance of TiO
at all sensitive to a and Kzz. For most of parameter space, there is
either not nearly enough upper atmosphere TiO to cause thermal
inversions, or easily enough.

4. CAVEATS

What should we conclude from the results in Section 3? In
this section, we address a few additional complications of
our analysis. First, in Section 4.1, we consider how a more
sophisticated analysis would treat the single-zone model, which
considers motions only in the vertical direction, presented in
Section 2. Then, in Section 4.2, we qualitatively describe how
horizontal winds, which effectively couple the day side of a
planet to colder parts (including both the night side and the polar

Table 1
Planetary Gravitational Acceleration, Stellar Irradiation, and Required Kzz

Planet g F∗ Required Kzz

(cm s−2) (erg cm2 s−1) a = 0.1 µm 1 µm 10 µm

HD 209458b 1000 1.0 6.2 × 108 6.2 × 109 6.5 × 1010

HD 149026b 1560 2.2 2.4 × 108 2.3 × 109 2.6 × 1010

TrES-4 721 2.4 2.7 × 108 2.7 × 109 3.0 × 1010

OGLE-TR-56b 1850 5.5 1.2 × 107 2.1 × 107 8.7 × 108

WASP-12b 1090 9.3 ∗1.6 × 107 ∗1.6 × 107 ∗1.6 × 107

Notes. This table gives planetary g and stellar flux (F∗), and values of Kzz

(in cm2 s−1) required to achieve fTiO = 0.5 above the cold trap, for particle
sizes of 0.1 µm–10 µm. The asterisks in the last row are because WASP-12b
has no dayside cold trap. The required value of Kzz, therefore, is independent of
condensate particle size.

regions), influence the dayside upper atmosphere abundance of
TiO.

4.1. Caveats for the Single-Zone Model

First, the models presented in Section 3 assume either solar
abundance of TiO or no TiO, but a planet’s interior mixing ratio
of titanium might be super-solar. If so, then fTiO could be lower
than 0.5 while still maintaining a 50% solar mixing ratio of
titanium in the upper atmosphere. If a planet’s interior titanium
abundance were twice solar, for instance, fTiO could be 0.25 for
a 50% solar mixing ratio of titanium at the top of the cold trap.
Nonetheless, the band in a–Kzz space in which f changes by a
factor of 2 from, say, 0.5 to 0.25, is fairly narrow in comparison
to the range of plausible values. Even an order of magnitude
change from 0.5 to 0.05 corresponds to a fairly modest change
in Kzz of a factor of ∼3.

It is also conceivable that we dismiss too quickly the pos-
sibility that VO contributes significantly to thermal inversions.
According to Sharp & Burrows (2007), vanadium condenses
at somewhat lower temperature than titanium. All else being
equal, its cold trap would, therefore, be smaller. Still, since
even 10 times solar abundance of VO does not produce as large
a thermal inversion as has been inferred from observations of
HD 209458b it is unlikely that VO could play a key role in
producing thermal inversions.

There are two ways in which our analysis is not self-
consistent, both related to the false assumption in most of
Figures 1–5 that TiO is present at constant mixing ratio through-
out a planet’s entire atmosphere. First, we use the temperature–
pressure profiles that result from this assumption to find where
the cold traps are. Second, we also use condensation curves cal-
culated based on this assumption in finding the cold traps. In
reality, as (the non-self-consistently generated) Figure 7 demon-
strates, the mixing ratio of TiO decreases with altitude. Lower
abundance of titanium condenses at lower temperature for a
given pressure. As a result, the condensation curves of a self-
consistent analysis would have shallower slopes that reflect the
decrease in mixing ratio of TiO at lower pressures. A more so-
phisticated model would self-consistently take into account the
progressive depletion of TiO in calculating both T–P profiles
and condensation curves.

Finally, one might ask whether our use of dayside average
models could mask the presence of local conditions near the
substellar point that are hot enough not to have cold traps.
For the four planets that our model predicts have cold traps
(HD 209458b, HD 149026b, TrES-4, and OGLE-TR-56b),
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Figure 8. Kzz required to achieve fTiO at p = 10−3 bar, for five planets, for
various condensate particle sizes. For condensates ranging from 0.1 µm (top
panel) to 10 µm (bottom panel), fTiO is plotted as a function of Kzz on each
of the five planets considered in this paper (same color scheme as in previous
figures). The magenta curve for WASP-12b is independent of particle size and
so is identical in all three panels. A horizontal black line is shown in each plot
at fTiO = 0.5 to aid the eye in identifying the value of Kzz that is required to
achieve this fiducial relative mixing ratio.
(A color version of this figure is available in the online journal.)

Table 1 also presents the value of the eddy diffusion co-
efficient Kzz that is required to maintain fTiO = 0.5 above the
dayside cold trap, for various assumed condensate sizes. 0.1 µm
particles require from Kzz ∼ 107 cm2 s−1 (in the case of OGLE-
TR-56b) to ∼109 cm2 s−1 (in the case of HD 209458b), and
these values increase roughly linearly with particle radius. 1 µm
particles require Kzz ∼ 107 to ∼1010 cm2 s−1; and 10 µm par-
ticles require Kzz ∼ 109 to ∼1011 cm2 s−1.

Since we lack constraints on both a and Kzz, our uncertainty
spans many orders of magnitude. Particle radii from 0.1 µm to
30 µm or more are not implausible, nor are values of Kzz from
102 to 109 cm2 s−1, possibly even greater. Only for a narrow
range of a–Kzz space is the upper atmosphere abundance of TiO
at all sensitive to a and Kzz. For most of parameter space, there is
either not nearly enough upper atmosphere TiO to cause thermal
inversions, or easily enough.

4. CAVEATS

What should we conclude from the results in Section 3? In
this section, we address a few additional complications of
our analysis. First, in Section 4.1, we consider how a more
sophisticated analysis would treat the single-zone model, which
considers motions only in the vertical direction, presented in
Section 2. Then, in Section 4.2, we qualitatively describe how
horizontal winds, which effectively couple the day side of a
planet to colder parts (including both the night side and the polar

Table 1
Planetary Gravitational Acceleration, Stellar Irradiation, and Required Kzz

Planet g F∗ Required Kzz

(cm s−2) (erg cm2 s−1) a = 0.1 µm 1 µm 10 µm

HD 209458b 1000 1.0 6.2 × 108 6.2 × 109 6.5 × 1010

HD 149026b 1560 2.2 2.4 × 108 2.3 × 109 2.6 × 1010

TrES-4 721 2.4 2.7 × 108 2.7 × 109 3.0 × 1010

OGLE-TR-56b 1850 5.5 1.2 × 107 2.1 × 107 8.7 × 108

WASP-12b 1090 9.3 ∗1.6 × 107 ∗1.6 × 107 ∗1.6 × 107

Notes. This table gives planetary g and stellar flux (F∗), and values of Kzz

(in cm2 s−1) required to achieve fTiO = 0.5 above the cold trap, for particle
sizes of 0.1 µm–10 µm. The asterisks in the last row are because WASP-12b
has no dayside cold trap. The required value of Kzz, therefore, is independent of
condensate particle size.

regions), influence the dayside upper atmosphere abundance of
TiO.

4.1. Caveats for the Single-Zone Model

First, the models presented in Section 3 assume either solar
abundance of TiO or no TiO, but a planet’s interior mixing ratio
of titanium might be super-solar. If so, then fTiO could be lower
than 0.5 while still maintaining a 50% solar mixing ratio of
titanium in the upper atmosphere. If a planet’s interior titanium
abundance were twice solar, for instance, fTiO could be 0.25 for
a 50% solar mixing ratio of titanium at the top of the cold trap.
Nonetheless, the band in a–Kzz space in which f changes by a
factor of 2 from, say, 0.5 to 0.25, is fairly narrow in comparison
to the range of plausible values. Even an order of magnitude
change from 0.5 to 0.05 corresponds to a fairly modest change
in Kzz of a factor of ∼3.

It is also conceivable that we dismiss too quickly the pos-
sibility that VO contributes significantly to thermal inversions.
According to Sharp & Burrows (2007), vanadium condenses
at somewhat lower temperature than titanium. All else being
equal, its cold trap would, therefore, be smaller. Still, since
even 10 times solar abundance of VO does not produce as large
a thermal inversion as has been inferred from observations of
HD 209458b it is unlikely that VO could play a key role in
producing thermal inversions.

There are two ways in which our analysis is not self-
consistent, both related to the false assumption in most of
Figures 1–5 that TiO is present at constant mixing ratio through-
out a planet’s entire atmosphere. First, we use the temperature–
pressure profiles that result from this assumption to find where
the cold traps are. Second, we also use condensation curves cal-
culated based on this assumption in finding the cold traps. In
reality, as (the non-self-consistently generated) Figure 7 demon-
strates, the mixing ratio of TiO decreases with altitude. Lower
abundance of titanium condenses at lower temperature for a
given pressure. As a result, the condensation curves of a self-
consistent analysis would have shallower slopes that reflect the
decrease in mixing ratio of TiO at lower pressures. A more so-
phisticated model would self-consistently take into account the
progressive depletion of TiO in calculating both T–P profiles
and condensation curves.

Finally, one might ask whether our use of dayside average
models could mask the presence of local conditions near the
substellar point that are hot enough not to have cold traps.
For the four planets that our model predicts have cold traps
(HD 209458b, HD 149026b, TrES-4, and OGLE-TR-56b),

Spiegel 
et al. (2009)

• Transit spectra suggest hot stratospheres 

• Optical absorbers in upper atmosphere: 
TiO (Hubeny et al. 2003), Sulfur (Zahnle et al. 2009)

• Eddy diffusion needed to overcome settling, 
including rainout from cold traps 

• Kzz ~ 107⎯1010 cm2/s to loft TiO

• Energetic consequences of mixing?



1490 SPIEGEL, SILVERIO, & BURROWS Vol. 699

 1 10
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

Wavelength (µm)

F P
la

ne
t/F

S
ta

r

Spectra for models of HD 209458b

Comparison: TiO/κ
and depth in atmosphere

Redistribution Parameter P
n
 = 0.3

No TiO/κ
20% solar TiO to 0.01 bars
20% solar TiO whole atmosphere
100% solar TiO whole atmosphere
κ = 0.2 to 0.01 bars
κ = 0.2 whole atmosphere
Knutson et al. 2008

1000 1500 2000 2500 3000

10

10

10

10

10
0

10
2

10
4

Temperature (K)
P

re
ss

ur
e 

(b
ar

s)

Comparison: TiO/κ
and depth in atmosphere

Redistribution Parameter P
n
 = 0.3

No TiO/κ
20% solar TiO to 0.01 bars
20% solar TiO everywhere
100% solar TiO everywhere
κ = 0.2 to 0.01 bars
κ = 0.2 whole atm

Figure 2. Comparison of the effect of model gaseous TiO in the whole atmosphere vs. gaseous TiO only in the upper atmosphere. This figure presents spectra (left
panel) and temperature–pressure profiles (right panel) for six models of HD 209458b. Superposed on the spectrum plot are the IRAC data points from Knutson et al.
(2008). There are two models with 20% solar TiO, one of which has this mixing ratio throughout the whole atmosphere and the other with TiO added only above 0.01
bar. There are two models with an absorber, that is gray between 3 × 1014 and 7 × 1014 Hz, whose opacity is κ = 0.2 cm2 g−1 (the κe of Burrows et al. 2007a); one
has the absorber throughout the whole atmosphere and the other has the absorber only above 0.01 bar. Finally, there is both a model with no TiO and a model with
solar abundance of TiO throughout the atmosphere. See Section 2.1 for a discussion.
(A color version of this figure is available in the online journal.)
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Figure 3. Comparison of different mixing ratios of TiO. This figure shows spectra (left panel) and temperature–pressure profiles (right panel) for five models of
HD 209458b: with no TiO, and with 10%, 20%, 50%, and 100% of solar abundance of TiO. Gaseous TiO is assumed throughout the atmosphere, and the redistribution
parameter Pn = 0.3 is used for all models. The spectrum plot superposes IRAC data points from Knutson et al. (2008). As the abundance of TiO increases, the
upper atmosphere temperature increases, since it absorbs a greater fraction of incident stellar energy, while the lower atmosphere cools because less of the stellar flux
penetrates to depth. The models with 50% and 100% solar abundance TiO have significant thermal inversions in their upper atmospheres; the models with less TiO
do not. It is most significant that higher mixing ratios of TiO cause greater planet–star flux ratios over most of the wavelength range. Models with 50% and 100%
solar abundance of TiO are decent matches to the IRAC 1 (∼3.6 µm), IRAC 2 (∼4.5 µm), and IRAC 3 (∼5.8 µm) points, though they do fail to match the IRAC 4
(∼8.0 µm) point. However, the 0%, 10%, and 20% solar TiO models, which lack thermal inversions, entirely fail to match the IRAC data.
(A color version of this figure is available in the online journal.)

seem ineluctably to have a thermal inversion, other theoretical
uncertainties notwithstanding. Figure 3 suggests that if TiO is
the extra absorber its mixing ratio in the upper atmosphere ought
to be no less than ∼50% of the corresponding solar ratio.

2.2. Modeling Mixing Ratio Versus Altitude

As Figure 3 shows, any cold-trap regions cannot deplete the
atmosphere of Ti too significantly without leaving TiO insuf-
ficiently abundant to produce the inferred thermal inversions.

How can we estimate how much the cold-trap region depletes
the upper atmosphere of TiO? In this section, we describe our
model for determining the atmospheric profiles of TiO and the
amount of depletion in a turbulent cold-trap region. To do so,
we introduce the turbulent diffusion coefficient Kzz (Colegrove
et al. 1965; Lewis & Fegley 1984; Noll et al. 1988; Drossart
et al. 1990; Rodrigo et al. 1990). Kzz parameterizes, in a sin-
gle number, a variety of processes (including turbulence and
other forms of macroscopic mixing) that act for each species to

Basic Structure of Hot Jupiters

• Optically thin regions (P <~ 10-3 bar)

• Complex radiative transfer & dynamics

• Deep Isotherm (P <~ 103 bar)

• Firr >> Fint

• Adiabat of Convective Interior

• Determines radius

• Radiative Convective Boundary (RCB): Where Cooling Rate Determined

Spiegel et al. (2009)
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2 Youdin & Mitchell

However, turbulence not only mixes chemical species,
it also transports heat. This paper develops a model that
includes this turbulent heat flux in the radiative layers
of hot Jupiters. While convection drives an outward flux
of energy, forced turbulence in stably stratified regions
drives a downward flux of energy. This effect is distinct
from — though it accompanies — the dissipation of tur-
bulence as heat, which we also include.
By altering the flow of energy, we change the cooling

and contraction rates of hot Jupiters. For modest lev-
els of turbulent diffusion, the outward radiative flux is
partially offset by the downward flux of mechanical en-
ergy. This reduces the net cooling flux from the convec-
tive interior, which self-consistently pushes the radiative
convective boundary (RCB) to higher pressure.2

For sufficiently strong eddy diffusion, the downward
flux of energy exceeds the outward radiative flux that
a planet of fixed entropy can provide. In this case the
turbulent heat flux flows into the convective interior, in-
creasing the internal entropy and inflating the planet. A
schematic of this mechanism is shown in Fig. 1. Because
higher entropy planets are more intrinsically luminous,
inflation leads to an equilibrium between turbulent heat
burial and radiative losses.
Our mechanism bears a striking resemblance to the

runaway greenhouse. In the latter, the atmosphere is
composed of a greenhouse gas in vapor pressure equilib-
rium with a large, surface volatile reservoir. The cool-
ing emission to space emanates from a pressure ∼ g/κ,
with surface gravity g and (Rosseland mean) opacity κ.
The emission is independent of the surface temperature
for optically thick atmospheres. Vapor pressure equilib-
rium determines the temperature at the emission level,
thus limiting the cooling radiation that the atmosphere
can achieve (Kombayashi 1967; Ingersoll 1969). If the
absorbed sunlight exceeds this limiting cooling emission,
the surface temperature increases until either the volatile
reservoir is depleted or the atmosphere becomes suffi-
ciently transparent to the surface blackbody emission.
The role of limiting cooling flux in the runaway green-
house is played in our mechanism by the cooling flux of
the core. The role of absorbed sunlight is played by the
downward, mechanical flux of energy. If the latter ex-
ceeds the former, the planet heats up by increasing the
core entropy until energy balance can be achieved – a
runaway mechanical greenhouse.
This paper is organized as follows. In §2 we review

standard radiative equilibrium models. We add turbu-
lent heat transport and energy injection to our model in
§3. We derive our mixing length formulae for the tur-
bulent transport of heat in §3.1 and present the model
equations and our solution methods in §3.2. We provide
a prescription relating turbulent diffusion and dissipa-
tion in stratified atmospheres in §3.3. We present and
analyze our model results in §4. We first treat constant
diffusion (partly to connect with S09) and ignore energy
dissipation in §4.1. We then add complexity by consider-
ing a spatially varying Kzz in §4.2 and including energy
dissipation in §4.3. We discuss consequences of changing
the opacity law in §4.4. We summarize our results and

2 For simplicity we will describe convectively stable regions as
“radiative,” even when we include the transport of heat by both
turbulence and radiation.

he
at

IR photosphere

Mixing
layer

deep interior

winds

Figure 1. Schematic of the mechanical greenhouse effect to in-
flate hot Jupiters. A downward flux of heat (large black arrow) is
driven by turbulence in the convectively stable “mixing layer” and
deposited in the deep interior. This downward flux can balance
or even exceed the convective losses (grey overturning arrows).
Atmospheric circulation (“winds”) launched near the photosphere
drive turbulence in the mixing layer. Other mechanisms, such as
non-linear gravity wave interactions, could also drive the turbulent
flux.

their implications in §5.

2. STANDARD ATMOSPHERIC MODELS

We start with a review of the standard radiative trans-
fer approximations used in this work (§2.1) and apply
them to radiative equilibrium solutions (§2.2). We will
introduce our notation and parameter choices. Arras &
Bildsten (2006, hereafter AB06) present a similar ana-
lytic model, which they compare to global models with
detailed opacities and equation of state (EOS).

2.1. Radiative Transfer

Our goal is to understand energy balance. We focus
on the deep atmosphere which is optically thick both to
incoming stellar irradiation and the planet’s emitted flux.
Here the equation of radiative diffusion

dT

dP
=

Frad

krad
(1)

relates the outgoing radiative flux Frad to the variation of
temperature T with pressure P via the radiative diffusion
coefficient

krad =
16σT 3g

3κ
, (2)

where σ is the Stephan-Boltzmann constant. Hydrostatic
balance, dP/dz = −ρg allows pressure to replace height z
as the vertical corrdinate, with ρ the atmospheric density.
We hold gravity g constant, invoking the plane-parallel
approximation for thin atmospheres.
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Figure 2. Radiative equilibrium (RE) atmospheres with deep
isotherms of Tdeep = 1500 K(blue curves) and 2000 K (dotted green
curves) matched onto internal adiabats (dashed red curves) with
entropy increasing from bottom to top. Grey dots mark the loca-
tion (Tc and Pc) of the radiative-convective boundary (RCB), and
squares show Pdeep, where ∇ = ∇ad/2.

2.2. Radiative Equilibrium Solutions

We now apply the two approximations of radiative
equilibrium (RE) to the stable layer. First, radiation
is the only relevant energy transport mechanism. Thus
Frad in equation (1) is the total flux of energy. Sec-
ond the flux is constant through the radiative layer with
Frad = Fc, the flux from the convective interior. This
assumes that local (thermal) energy release is negligible.
Fig. 2 plots radiative equilbrium atmospheres for κ ∝

P , with two values of Tdeep matched on to interior adia-
bats labeled by T1. We obtain analytic RE solutions by
integrating equation (1) with Frad = Fc and T = Tdeep
at P = 0 to get

T = Tdeep

[
1 +

∇ad

∇∞ −∇ad

(
P

Pc

)1+α
]1/(4−β)

. (11)

This solution uses equation (8) and we have imposed the
requirement T (Pc) = Tc to find

Tc=Tdeep

(
∇∞

∇∞ −∇ad

)1/(4−β)

(12)

A valid solution — one that transitions to convection —
thus requires ∇∞ > ∇ad and α > −1 (which together
assure β < 4). As Fig. 2 shows, Tc increases with Tdeep
but is independendent of the interior entropy.
The RCB sinks to larger pressure as entropy decreases

or as Tdeep increases,

Pc = k∇P1

(
Tdeep

T1

)1/∇ad

, (13)

which follows from equations (7) and (12) with the con-
stant

k∇ ≡
(

∇∞
∇∞ −∇ad

)∇∞/[∇ad(1+α)]

≈ 2.1 .

The core flux for RE atmospheres follows from equa-
tions (8), (12) and (13) as

Fc = kF
g

κ1

(
T1

T 1−∇ad/∇∞
deep

)(1+α)/∇ad

∝ T 7
1

T 3
deep

. (14)

This gives the well known result that increased irradia-
tion reduces the cooling of the planet, while higher en-
topy planets are more luminous. The constant

kF ≡ 16σ∇ad

3P 1+α
1

(
1− ∇ad

∇∞

)∇∞/∇ad−1

.

Equation (14) is consistent with, but more specific than,
equation (9) in assuming that RE sets the location of Pc.
We chose the parameters for Fig. 2 — used throughout

this work — by roughly matching the analytic solutions
to more detailed hot Jupiter models, as in AB06.
We constrain the entropy parameter T1 by appealing

to the typical Pc ≈ 1 kbar location of the RCB in hot
Jupiters with modest, i.e. Jovian, entropies. With T1 =
260 K, we reproduce a 1 kbar RCB for Tdeep = 1500
K. We also consider larger values of T1 to describe more
inflated planets, but keep Pc & 1 bar.
The normalization of the opacity determines the core

flux.4 Requiring Fc = σ(100 K)4 for the standard pa-
rameters and Pc = 1 kbar, gives κo = 0.18 cm2/g for
g = 103 cm2/s. We emphasize that this is not a realistic
opacity law (in particular it is too low at small pressures).
We are merely choosing parameters that allow the simple
analytic model to mimic properties of more detailed hot
Jupiter models.
The lapse rate for RE solutions is (from eq. [11])

∇ = ∇ad
(P/Pc)

1+α

(
1− ∇ad

∇∞

)
+ ∇ad

∇∞
(P/Pc)

1+α
, (15)

demonstrating that ∇ = ∇ad at P = Pc and that the
solution becomes isothermal ∇ → 0 at low pressures.
Smooth opacity laws give a monotonic increase in∇ with
P . Opacity windows give more complicated profiles of∇,
including multiple zones of convection (see §4.4).
We define Pdeep, the effective depth of the isothermal

layer, as the location where ∇ = ∇ad/2. This occurs at

Pdeep =

(
∇∞ −∇ad

2∇∞ −∇ad

)1/(1+α)

Pc ≈ 0.55Pc . (16)

Our definition of Pdeep differs from AB06, who define
Pdeep as a characteristic scale that might exceed Pc.
We now revisit the validity of applying the boundary

condition T = Tdeep at P = 0. Due to the isother-
mal layer at low pressures, applying the boundary con-
dition at any P ( Pdeep gives indistinguishable solu-
tions. However solutions are only physically valid in
optically thick regions, for P & Pthick ∼ g/κmin ∼
10 mbar[κmin/(0.1 cm2/g)]−1. The relevant opacity κmin

4 Remarkably, κo does not affect the location of the RCB along
a given adiabat, only Tdeep and the power laws are required. Over
long times though the opacity at the RCB affects entropy evolution
and thereby RCB location.
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For the Rosseland mean opacity, our calculations will
use a power law,

κ = κ1P
αT β ≡ κo

(
P

Pkb

)α (
T

T2k

)β

. (3)

The two forms are equivalent, with the constant κ1 being
more compact, while κo has units of opacity and is nor-
malized to Pkb = 1 kbar and T2k = 2000 K. Unless stated
otherwise, calculations will use κ ∝ P , i.e. α = 1,β = 0
as a rough approximation to collision induced molecular
opacity. Our normalization choice of κo = 0.18 cm2/g
will be justified below (§2.2). We discuss alternate opac-
ity laws in §4.4. While realistic opacities are only well
approximated by power laws over a limited range, this
considerable simplification is useful for developing intu-
ition.
At the top of our atmosphere, we set the temperature

to Tdeep, an approach used in AB06 and advocated by
Iro et al. (2005). This approach is valid when the inci-
dent stellar flux exceeds the emitted radiation, resulting
in a deep isothermal region at the top of the optically
thick atmosphere. In this physical situation, the precise
location of the upper boundary is not important, as we
explain further in §2.2. Note that some (Baraffe et al.
2003) but not all (Seager & Sasselov 2000) detailed radia-
tive transfer solutions show an extended isotherm in hot
Jupiter atmospheres, presumably reflecting the range of
depths over which starlight is absorbed.
The incident stellar flux averaged over the full plane-

tary surface, Firr ≡ σT 4
∗ gives a characteristic tempera-

ture

T∗ ≈ 2000 K
L1/4
∗,"

M1/6
∗,"P 1/3

day

(4)

where stellar mass and luminosity, M∗," and L∗," are
normalized to solar values, and the orbital period Pday is
normalized to a (24 hour) day. Horizontal temperature
gradients are important for driving winds in the weather
layer. However these winds efficiently smooth tempera-
ture gradients at pressures ! bar, where timescales for
advection are shorter than for radiative losses (Showman
et al. 2009). Thus 1D models are appropriate for basic
considerations of energy balance.
Because the planet is not a perfect blackbody, Tdeep

may not match T∗. Greenhouse or anti-greenhouse effects
depend on the relative transparency of the atmosphere
to stellar and emitted longwave radiation. (To be clear,
we are now referring to standard radiative effects, not the
mechanical greenhouse.) If incoming starlight penetrates
below the infrared photosphere, then the greenhouse ef-
fect gives Tdeep > T∗. If, however, significant incoming
radiation is absorbed above the photosphere, a strato-
spheric thermal inversion gives Tdeep < T∗. See Hubeny
et al. (2003) for a more quantitative analysis. In most of
our examples we adopt Tdeep = 1500 K, as appropriate
for short (∼ 1 day) orbital periods with a thermal inver-
sion, or for longer periods with no thermal inversion, a
greenhouse effect and/or a more luminous host star.
Giant planets, including hot Jupiters, become unstable

to convection at depth. The lapse rate of the atmosphere

∇ ≡ d lnT

d lnP
=

3κP

16g

Frad

σT 4
(5)

characterizes its stability, and the final equality follows
from equation (1). Convection occurs where ∇ > ∇ad.
We set ∇ad = 2/7, the adiabatic index of an ideal di-
atomic gas. In reality, non-ideal interactions lower ∇ad
at the high pressures of exoplanet atmospheres, and pro-
mote convection. At the top the atmosphere, where the
optical depth τ = κP/g ≈ 1 and Frad & σT 4

deep, equa-
tion (5) shows that ∇ & 1 and the atmosphere is in-
deed stable and nearly isothermal. For reasonable opac-
ity choices, ∇ increases with depth, and gives a transition
to convection (even under the ideal gas approximation).
In convective regions we set ∇ = ∇ad, i.e. an adiabatic

profile with T ∝ P∇ad . The efficiency of convective en-
ergy transport makes the modest super-adiabaticity neg-
ligible. The level of the adiabat is determined by the in-
ternal entropy. A global calculation of entropy is beyond
our illustrative scope. Instead, motivated by Hubbard
(1977), we label our adiabats by T1, the temperature it
would have at P1 = 1 bar pressure, even though the adi-
abat likely does not extend to such low pressure. We de-
fine a reference entropy Sref , corresponding to T1 = 250
K. Relative entropy values for different T1 are then com-
puted as

∆S ≡ S − Sref = CP ln(T1/250 K) (6)

where the specific heat (at constant pressure) CP =
R/∇ad is assumed constant. For the gas constant R =
kB/(µmp) we use a mean molecular weight µ = 2.34
times the proton mass mp.
The stable atmosphere matches smoothly onto the

convective adiabat at the radiative-convective boundary
(hereafter RCB). Since the temperature Tc and pressure
Pc at the RCB lie on the interior adaibat we require

T1 = Tc

(
P1

Pc

)∇ad

. (7)

The location of the RCB is crucial for global evolution.
The cooling of the convective interior is determined by
the radiative flux, Fc, leaving the RCB. Combining equa-
tions (3), (5) and then (7) at the RCB gives

Fc=
∇ad16gσT 4−β

c

3κ1P
1+α
c

(8)

=
∇ad16gσ

3κ1

(
T1

P∇ad
1 P∇∞−∇ad

c

)4−β

∝ T 4
1

P 6/7
c

, (9)

with
∇∞ ≡ (1 + α)/(4− β) = 1/2 . (10)

Core flux increases with the interior entropy.3 Pushing
the RCB to higher pressures decreases the core flux if
∇∞ > ∇ad. This condition is satisfied for our opac-
ity choice, and is generally required for a transition to
convection (as we show shortly). We emphasize that the
dependance of Fc on Pc is independent of the mechanism
that changes Pc, though previous works have mostly con-
sidered irradiation.

3 The numerical scaling in equation (9) ignores the effect that
higher entropy would lower gravity by inflating the planet. This
effect cancels when computing the total luminosity, which is ulti-
mately more important.

Cooling flux depends on irradiation 
& internal entropy
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is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick ! Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate ε. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − ε

g
. (18)

Sources of ε include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and ε.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance " and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =

(
dT

dz

∣∣∣∣
ad

− dT

dz

)
"

=− "T

CP

dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (" > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w", as

Feddy=−KzzρT
dS

dz

=−Kzzρg

(
1− ∇

∇ad

)
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus−δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P "

CP

dS

dz

∣∣∣∣
z±!

w

"
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = "/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution
Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− ε

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).
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is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick ! Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate ε. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − ε

g
. (18)

Sources of ε include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and ε.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance " and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =

(
dT

dz

∣∣∣∣
ad

− dT

dz

)
"

=− "T

CP

dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (" > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w", as

Feddy=−KzzρT
dS

dz

=−Kzzρg

(
1− ∇

∇ad

)
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus−δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P "

CP

dS

dz

∣∣∣∣
z±!

w

"
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = "/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution
Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− ε

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).
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diation near Pthick. As long as Pthick ! Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate ε. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − ε

g
. (18)

Sources of ε include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and ε.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance " and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =
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dT

dz

∣∣∣∣
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− dT
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)
"

=− "T

CP

dS
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where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (" > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w", as

Feddy=−KzzρT
dS

dz

=−Kzzρg

(
1− ∇

∇ad

)
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The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus−δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P "

CP

dS

dz

∣∣∣∣
z±!

w

"
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = "/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution
Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− ε

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).

162 T. Guillot and A. P. Showman: Evolution of Pegasi planets

The dynamical coupling between atmospheric layers sug-
gests that winds should develop throughout the radiative
region even though the radiative cooling and heating oc-
curs predominantly at pressures less than a few bars. The
boundary between the radiative region and the convective
interior (at 100–1000 bars depending on the model) is a
likely location for dissipation, because Kelvin-Helmholtz
instabilities and breaking of downward propagating waves
can both happen there. Furthermore, application of the
Taylor-Proudman theorem to the convective interior sug-
gests that winds should develop throughout the convective
interior even if the forcing occurs only near the top of the
convective region. This increases the possibility of dissipa-
tion in the interior.

With the inclusion of an internal dissipative source,
the energy equation becomes

∂L

∂m
= ε̇ − T

∂S

∂t
, (5)

where m is the mass inside any given level, and ε̇(m) is
the energy dissipated per unit time per unit mass at that
level.

The evolution of Pegasi planets including energy dis-
sipation has been studied by Bodenheimer et al. (2001)
in the context of the tidal circularization of the orbit of
the planet. These authors focused on simulations where
ε̇ was constant with m (although they also performed
some simulations with spatially-varying dissipation). The
major difficulty is, as noted by the authors, the fact
that the present eccentricities of extrasolar planets within
0.1 AU of their star are small and that the detected Pegasi
planets generally do not possess close massive planetary
companions which would impose on them a forced eccen-
tricity.

Instead, we argue that kinetic energy, generated from a
portion of the absorbed stellar flux, is transported to the
interior where it can be dissipated. Although the depth
of such dissipation is unknown, the majority could be de-
posited within the radiative zone rather than throughout
the interior. Due to the rapid rise of the Rosseland opacity
with pressure and temperature, the effect of heating any-
where within the convective core is essentially equivalent
to the case where it occurs entirely at the center (a result
shown by Bodenheimer et al.). The question is whether
even shallower heating – say that occurring at tens to
hundreds of bars, where atmospheric kinetic-energy depo-
sition is likely – can affect the evolution. Therefore, we
here explore the influence of the dissipation’s depth de-
pendence and magnitude Ė =

∫
ε̇dm.

An ad hoc, but reasonable, assumption is that a frac-
tion of up to 1% of the absorbed stellar flux is dis-
sipated inside the planet. Quantitatively, we use Ė =
2.4 × 1027 erg s−1. Relatively small values of Ė can affect
the evolution, provided they are comparable or larger than
the luminosity obtained without dissipation L (note that
L ∼ 1024−1025 erg s−1) and affect the radiative gradient
on a sufficiently extended region of the interior.

Fig. 8. Evolution tracks obtained in the “cold” case, show-
ing the influence of dissipation. The bottom grey line corre-
sponds to the case with no dissipation. The other solid lines
have been calculated including the dissipation of 1% of the
absorbed stellar flux (2.4 × 1027 erg s−1), at various depths:
from bottom to top, dissipation was supposed to occur in var-
ious mass shells: m̃0 = 10−5, 2 × 10−5, or at the center of
planet, respectively. The dashed line corresponds to dissipa-
tion of 10% of the absorbed stellar flux (2.4 × 1028 erg s−1)
with m̃0 = 5 × 10−6. The dotted evolution track is for dissi-
pation of Ė = 1.8 × 1026 erg s−1 at the planet’s center. In the
first two cases, energy dissipation occurs mostly from the upper
boundary to the nearly-isothermal region. The m̃0 = 5×10−6,
10−5 and 2 × 10−5 values of adimensional mass correspond to
pressures of 5, 11, and 21 bars, respectively.

A first calculation assumes that energy is dissipated
entirely at the center of the planet. In that case, as shown
in Fig. 8 (uppermost solid line), an equilibrium with the
star is reached after only ∼100Ma, at which point the
planet’s radius is 1.87RJ and its structure remains un-
changed with time (as long as the star is also in equi-
librium). This is very similar to the results obtained by
Bodenheimer et al. (2001). Also in agreement with their
results, we find that a calculation with the same Ė, but
with the dissipation evenly distributed throughout the in-
terior (i.e., uniform ε̇) yields a curve similar to the upper
solid line in Fig. 8.

In order to estimate the consequences of energy dissi-
pation occurring closer to the planet’s surface, we use the
following arbitrary functional form:

ε̇ = ε̇0e−(1−m̃)/m̃0 , (6)

where m̃ is the adimensional mass (0 at planet’s center
and 1 at its surface), m̃0 is the mass fraction of the external
regions over which most of the dissipation occurs, and ε̇0
is chosen such that

∫
ε̇dm = Ė = 2.4 × 1027 erg s−1. We

will use values of m̃0 equal to 5×10−6, 10−5, and 2×10−5,
which correspond to locations where the pressure is 5, 11,
and 21 bars, respectively.

A choice of m̃0 = 10−5 (which implies dissipative
heating distributed dominantly from the top boundary to
15 bar but with a tail of heating reaching∼100bar) yields

Guillot & Showman (2002)
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is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick ! Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate ε. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − ε

g
. (18)

Sources of ε include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and ε.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance " and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =

(
dT

dz

∣∣∣∣
ad

− dT

dz

)
"

=− "T

CP

dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (" > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w", as

Feddy=−KzzρT
dS

dz

=−Kzzρg

(
1− ∇

∇ad

)
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus−δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P "

CP

dS

dz

∣∣∣∣
z±!

w

"
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = "/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution
Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− ε

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).
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this case the energy flux is inwards. We leave the forcing
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the parcel and its surroundings. For stable stratifica-
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parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w", as
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The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating
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The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus−δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
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= ∓ P "
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where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = "/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution
Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− ε

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).

Eddy Diffusion
Kzz ~ w⋅l

Net Flux



Effect of Eddy Heat Flux (Ignoring Dissipation)

• Increasing Eddy Diffusion drives RCB 
(radiative convective boundary) deeper

• Reduces cooling flux

• Effect on T-P profile is modest

• Critical eddy diffusion, Kzz,crit

• Eddy flux exceeds cooling rate 
associated with entropy

• Kzz > Kzz,crit ⇒ heat interior
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Inflation

• Self-regulation: if Kzz > Kzz,crit 

• entropy & Kzz,crit increase                  
⇒ Kzz = Kzz,crit

• Balance eddy & radiative fluxes, 
i.e. heat burial & cooling

• Inversions lower Tdeep

• Kzz,crit rises, limiting inflation

• No simple relation between 
inversions & inflation
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Complexity

• Letting diffusion vary with height

• Kzz,crit applies near RCB

• Carnot efficiency constrains 
mixing at top, i.e. photosphere        
h

• Adding dissipation

• Lowers Kzz,crit

• Easier for turbulent flux to inflate
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Figure 7. Models with a depth-dependent Kzz ∝ P−ζ for ζ =
1, 0,−1 and −1.4(dotted green, dashed red, dot-dashed purple and
solid blue curves, repspectively) and no dissipation. Strong mixing
pushes Pc → ∞ while Pdeep is plotted with colored squares. (Top:)
Radiative flux, which is equal and opposite to the eddy flux. Lower
ζ values give strong mixing and larger fluxes at the top of the
atmosphere. (Bottom:) Thermal profiles show that strong upper
atmosphere mixing (low ζ) heats the upper atmosphere and results
in a more gradual approach to the adiabat.

diative fluxes near Pdeep, which itself scales with internal
entropy and Tdeep. To test the robustness of this find-
ing, we include a depth dependence to Kzz ∝ P ζ . Since
winds are driven near the photosphere, i.e. the top of
our atmospheres, one might expect stronger diffusion in
the upper atmosphere, i.e. ζ < 0. On the other hand if
turbulence is triggered by shear layers with the convec-
tive interior, perhaps ζ > 0. As discussed in §5 detailed
dynamical simulations can help determine plausible dif-
fusion profiles.
Fig. 7 shows the effect of varying ζ with other param-

eters fixed (at our standard values of Tdeep = 1500 K,
T1 = 250 K, α = 1, β = 0 as in e.g. Fig. 3). These plots
show the strongest possible mixing, which (as we found
for constant Kzz) drives the RCB to infinite depths and
reduces the core flux to zero.
The maximum mixing near Pdeep is relatively un-

changed, except when the mixing at the top of the at-
mosphere is quite strong. Quantitatively we compare
values of Kzz,deep, defined as the maximum value of Kzz
at a reference P = 550 bar, which is Pdeep of the radia-
tive equilibrium atmosphere. For constant Kzz we found
Kzz,crit = Kzz,deep = 1665 cm2/s. For mixing that in-
creases with depth as ζ = 0.5, 1.0, and 1.5, Kzz,deep de-
clines by a modest 5%, 6% and 5%, respectively. When
mixing declines with depth as ζ = −0.5, −1.0, and −1.4,
Kzz,deep increases by 14%, 58% and 300%, respectively.
We cannot consider models with ζ ! −1.5 because they
do not approach an adiabat at depth. The bottom panel
of Fig. 7 shows that the approach to the adiabat is al-
ready quite gradual for ζ = −1.4. We explore this issue
further in appendix A.
The top panel of Fig. 7 shows the flux profiles for sev-

eral ζ values. The plot shows both radiative and eddy
fluxes, which obey Frad = −Feddy because the net flux,
F → 0 when mixing pushes the RCB to infinite depth.
We also plot the radiative flux for the reference radiative
equilibrium model (horizontal black dotted line) without
any mixing. The explanation for these flux profiles mir-
rors the discussion of Fig. 6 in §4.1. At high pressures the
flux is controlled by the radiative flux along the adiabat.
Increasing or decreasing the mixing with depth has little
effect on the deep eddy flux. Changes to Kzz are com-
pensated by (1 −∇/∇ad) — see equation (20) — which
is small and sensitive to slight changes in ∇ close to the
adiabat.
The flux in the low pressure, isothermal region scales

as −Feddy ∝ ρKzz ∝ P 1+ζ (see eq. [20]). This explains
why the flux components, Frad = −Feddy, increase with
height if ζ < −1. Driving larger radiative fluxes in the
upper atmosphere requires a steeper dT/dP . The tem-
perature profiles in Fig. 7 (bottom panel) reflect this.
The ζ = −1 and especially the top ζ = −1.4 curves
are noticeably hotter at intermediate pressures and have
smaller Pdeep. We thus find that mixing at the top of
the atmosphere is more effective — compared to uniform
or bottom-focused mixing — at lifting (i.e. heating) the
T−P profile. The additional heat in this case is provided
by a downward flux of mechanical energy across the top
boundary.

4.2.1. Limits on Mixing Near the Photosphere

We now consider what might constrain Kzz near the
top of the atmosphere, since we find that internal entropy
mostly constrains diffusion near Pdeep. Our ζ ≤ −1 solu-
tions in Fig. 7 show that strong mixing at the top requires
a large flux of mechanical energy at the top of the atmo-
sphere. Weather-layer winds are a plausible source of
mechanical energy, and they are generated by the atmo-
spheric heat engine driven by insolation. The thermody-
namic efficiency of all planetary atmospheres in the Solar
System is of order 1%. If we restrict the magnitude of
Feddy to a fraction f∗ ∼ 1% of the insolation F∗ ∼ σT 4

deep
we get

Kzz,top<
f∗F∗
ρtopg

(33)

≈ 109
cm2

s

(
Ptop

0.1 bar

)−1 ( Tdeep

1500 K

)5 f∗
1%

,



Implications

• Turbulent diffusion needed for TiO 
hypothesis appears excessive

• Would over-inflate planets, 
close to nail in coffin

• Smaller turbulent fluxes can inflate 
hot Jupiters

• Compliments dissipation

• Inefficient for cold Jupiters, 
requires a deep stratified layer

Figure 10 shows radius versus mass for a range of core en-
tropy and irradiation. The effects of irradiation are seen to be
most severe at low mass and low entropy, since Tdeep is becom-
ing a significant fraction of the core temperature. At M ’ MJ/2
and low entropy, the range of irradiation temperatures shown
here can change the radius by as much as 50%. Radii for fully
adiabatic planets (not shown here) agree well with the Tdeep ¼
500 K lines.

Figure 11 shows radius versus entropy for a range of masses
and irradiation temperature. At late times in the evolution when
the entropy is small, the radius is converging to some constant
value that depends on both M and Tdeep. If the planet were al-
lowed to cool under a constant irradiation field indefinitely, it
would approach an isothermal state (Hubbard 1977) atT ¼ Tdeep
with a radius R ¼ R0.

5 Although in practice planets will never
reach this isothermal state, it is the minimum radius to which the
planet is evolving. Furthermore, it is the deviation around the
isothermal radius, !R ¼ R" R0, which is changing with age. As
we now show, !R has a particularly simple behavior with time
over the entire observable range !R # R.

To motivate the following numerical calculations, we first dis-
cuss the change in radius for a fluid element in mass shell m as
the entropy is changed. The radius of a mass shell in the convec-
tion zone can be written as

r3(m; S ) ¼ 3

4"

Z m

0

dm0

#(m0; S )
; ð27Þ

hence, for fixed interior mass the change in radius with respect
to entropy is

@r

@S
¼ " 1

4"r 2

Z m

0

dm0

#(m0; S )

@#(m0; S )

@S

!!!!
m 0
: ð28Þ

Given an EOS #(P; S) and switching to radius as the integration
variable, we find

@r

@S
¼ " 1

r 2

Z r

0

r 02 dr 0
1

Cp

@ ln #

@ ln T

!!!!
P

þ !"1
1

@ ln P

@S

!!!!
m 0

" #
; ð29Þ

where equation (15) has been used. The second term in equa-
tion (29) mainly corresponds to a uniform shift in pressure in the
core, due to the radius changing. Near the surface this term must
go to zero since pressure is proportional to external mass, which
is fixed. Consequently, the first term is most important. From
equation (26), the volume expansion term is @ ln #/@ ln T jP /
kBT /EF, with a significant correction due to Coulomb interactions
that acts to increase the expansion since the electron pressure is
effectively lowered. Hence, the change in radius in the core is
proportional6 to Tc. As Tc depends exponentially on the entropy
(eq. [19]), the contribution to the radius from the degenerate core
depends exponentially on entropy. In the nondegenerate enve-
lope, @ ln #/@ ln T jP ’ "1. Plugging this result into equation (29)
implies that the change in radius due to the nondegenerate enve-
lope scales linearly with entropy. As a consequence, it is less
important than the exponential dependence from the core.

Fig. 11.—Radius vs. core entropy for different masses and irradiation. Solid,
dotted, and dashed lines represent masses M /MJ ¼ 0:32, 1.0, and 3.2, respec-
tively. Each group of lines represents Tdeep ¼ 500, 1500, 2500, and 3500 K,
from bottom to top. [See the electronic edition of the Journal for a color version
of this figure.]

5 In principle,R0 can be calculated by integrating the structure equations for a
given EOS. In practice, such low temperatures and high densities are not covered
by the S95 EOS. In this paper, we compute the isothermal radius by fitting evo-
lutionary curves of radius vs. entropy, defining R0 by extrapolating to the small-
entropy limit.

6 Eq. (26) has ignored contributions to the Coulomb correction that depend
on temperature and do not scale linearly with temperature. Using the EOS in
Potekhin & Chabrier (2000), we find the contribution of these terms to the vol-
ume expansion seems to be somewhat smaller than the ideal ion pressure.

Fig. 10.—Radius vs. mass curves for different core entropy and irradiation.
Each group of lines with a different line style denotes a different entropy. Solid,
dotted, short-dashed, long-dashed, and dot-dashed lines represent entropies
Smp/kB ¼ 6; : : : ; 10. Each group of lines represents deep isotherms Tdeep ¼
500, 1500, 2500, and 3500 K, from bottom to top. [See the electronic edition of
the Journal for a color version of this figure.]
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Future Work

• Add realistic physics

• 1st step: Compute turbulent fluxes for 
existing T-P profiles w/ detailed EOS & 
opacity (courtesy Dave Speigel)

• Self-consistent solution: Include eddy 
flux in radiative-convective model

• Generalize analysis to optically thin regions: 
How fragile is inversion itself to mixing?

• Be useful: Develop sub-grid prescriptions 
for GCMs (global circulation models)
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Figure 5. Comparison of temperature–pressure profiles for models of five planets with no TiO (left panel) and with solar abundance of TiO (right panel). This figure
shows T–P profiles for models without (left panel) and with (right panel) the strong optical absorber TiO, for HD209458b (blue), HD149026b (green), TrES-4 (red),
OGLE-TR-56b (cyan), and WASP-12b (magenta). The redistribution parameter Pn is set equal to = 0.3. Condensation curves (black) for titanium are superposed,
showing the locations of the condensation curves at 0.32 solar abundance (dashed-dotted line), solar abundance (solid line), and 3.2 times solar abundance (dashed
line). The addition of TiO heats the upper atmosphere and cools the lower atmosphere, because more of the incident stellar flux is absorbed high in the atmosphere.
(A color version of this figure is available in the online journal.)
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Figure 6. Comparison of spectra for models of five planets with no TiO (left panel) and with solar abundance of TiO (right panel). This figure presents the spectra that
correspond to the T–P profiles in Figure 5, for the same five planets. Here, adding TiO increases the planet–star flux ratios in most of the IRAC range. In particular,
the flux ratios for IRAC 2 (∼4.5 µm) and IRAC 3 (∼5.8 µm) are significantly increased.
(A color version of this figure is available in the online journal.)

atmosphere). This is reflected in the spectrum as an increase in
planet–star flux ratio throughout much of the near infrared.

How much TiO is likely to survive the cold traps on these
planets and to reach the upper atmospheres? In Figures 7–10,
we address this question.

Figures 7–10 all show the results of integrating Equation (23)
for different assumed values of a and Kzz (and for the different
T–P profiles of the different planet models). The T–P profile
(which is determined by finding a radiative equilibrium solution
to the radiative transfer equation in a plane–parallel atmosphere,
as described in Section 2.1 and in the cited references) is related
to altitude through the scale height relationship of Equation (3).
Terminal velocities vf are calculated with Equations (15)
and (17).

Figure 7 illustrates how much turbulent mixing is required
to achieve nonzero concentrations of TiO at the top of the
atmosphere of each of the five planets under consideration in this
paper. This figure presents vertical profiles of fTiO for various
combinations of a (top to bottom: 0.1 µm to 1 µm to 10 µm) and
Kzz (left to right: 106 cm2 s−1 to 108 cm2 s−1 to 1010 cm2 s−1).
Since WASP-12b has no dayside cold trap in our models, its
curves are independent of a. To achieve nonzero concentrations
of TiO at microbar pressures requires values of Kzz that are very
high for a stably stratified region such as the radiative part of an
EGP’s atmosphere (Kzz ! 1010 cm2 s−1, even for WASP-12b,
with no dayside cold trap). To achieve a nonzero concentration
of TiO at millibar pressures, the requirements on Kzz are not quite
so extreme, but even still Kzz must be !108 cm2 s−1, even for the
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is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick ! Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate ε. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − ε

g
. (18)

Sources of ε include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and ε.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance " and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =

(
dT

dz

∣∣∣∣
ad

− dT

dz

)
"

=− "T

CP

dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (" > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w", as

Feddy=−KzzρT
dS

dz

=−Kzzρg

(
1− ∇

∇ad

)
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus−δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P "

CP

dS

dz

∣∣∣∣
z±!

w

"
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = "/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution
Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− ε

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).

Spiegel et al. (2009)



Summary

• Hot Jupiters have deep surface radiative 
layers which regulate the evolution of 
planetary radius

• Turbulence in radiative layers bury heat 
and affects the emergent spectrum

• Helps explain inflated transit radii

• Mixing needed for TiO to cause 
thermal inversions appears excessive

• Actual profile of turbulent (and other) 
mixing in radiative layers?  Subject to 
dynamical constraints (this morning’s

What’s 
happening to my 
deep isotherm?

I feel 
disordered 

inside!
lectures)


