Improving the Grain Growth model in the outer part of a circumstellar disk

ISIMA student: Marina Galvagni PI: Pascale Garaud Collaborators: Christoph Olczak, Farzana Meru

4 August 2011, Beijing

Outline

The introduction: observational evidences, previous results

Strog (GRowth Of Grains)

☆ Features studied:

porosity coagulation and fragmenting probabilities second coagulation region bouncing region

* Results

2 Conclusions & future studies

Problem: Observation: evidence for mm / cm size grains in the outer part of circumstellar disks

Outer part of TW Hya (r > 10s AU)

(Wilner et al, 2005)

Credit: Birnstiel Phd Thesis

Problem:

Theory:

mm size grains (or even larger) difficult to grow at 100 AU
even if successful growth: strong gas coupling causes
rapid inward radial drift

\rightarrow similar to Meter size problem at 1 AU

Previous results:

strong dependence on the parameters (in particular, gas-dust ratio)

- Birnstiel (2011): there is a maximum size for the particles at r = 100 AU

Brauer et al (2008): growth to sizes larger than mm
only for fragmenting velocity > 30 m/s

GrOG: Growth of Grains

Coagulation – Fragmentation solver for Growth of Grains in protoplanetary disks at fixed radius.

<u>Recipe</u> for cooking grains: - Take a disk with Surface Density ~ 1/r and $M_{star} = 0.8 M_{sun}$ $M_{disk} = 0.1 M_{star}$ $R_{disk} = 200 AU$ r = 100 AUH(r) = 10 AUDust/Gas = 0.01- Take as initial distribution of grains a gaussian centered at s = 10 micron

How to bake:

$$\frac{dm}{dt} = \int_{s_{\min}}^{s} \frac{dn}{ds} (s') m(s') \Delta v(s, s') A(s, s') \epsilon \, ds'$$

How to bake:

$$\frac{dm}{dt} = \int_{s_{\min}}^{s} \frac{dn}{ds} (s') m(s') \Delta v(s, s') A(s, s) \epsilon ds$$

Particle mass Relative velocity Cross section Coagulation & fragmenting efficiency

Evolution of the porosity with size

Initial growth is <u>fractal</u>, leading to fluffy particles. Successive collisions compact the particles. (Blurm and Wurm, 2008)

Evolution of the porosity with size

Initial growth is fractal, leading to fluffy particles. Successive collisions compact the particles. (Blurm and Wurm, 2008)

Evolution of the porosity with size

Initial growth is fractal, leading to fluffy particles. Successive collisions compact the particles. (Blurm and Wurm, 2008)

Ormel et al (2011)

Relative velocity

Taken into account:

- Brownian motion
- Settling velocity
- Radial drift velocity
- Turbulent velocity

Cross section:

$$A(s,s') = \pi(s+s')^2$$

Reference model: Brauer et al, 2007

- Coagulation + fragmentation

Fragm. prob

$$p_{\rm f}(\Delta v) = \left(\frac{\Delta v}{v_{\rm f}}\right)^{\psi} \Theta (v_{\rm f} - v) + \Theta (v - v_{\rm f})$$

V_f = 30 m/s phi = 2.0

Coag. prob = = 1 – fragm. prob

Redistribution of mass after fragmentation: $n(m) dm \propto m^{-\xi} dm$

Friday, August 5, 2011

with

 $\xi = 1.83$

ISIMA 2011

Tail model

Step function for the probabilities + maxwellian probability distribution for the velocities

 $V_{crit} = 30 \text{ m/s}$

Coagulation and fragmentation probabilities

Tail model

ISIMA 2011

Coagulation Fragmentation

ISIMA 2011

Tail model

Coagulation Fragmentation

Tail model + Bouncing Introduction of a <u>bouncing</u> regime: V_{cirt}(coag) = 10.0 m/s V_{crit}(fragm) = 30.0 m/s

Coagulation Fragmentation Bouncing

ISIMA 2011

Tail model + II Coagulation Introduction of a second coagulation regime, for $(s_i/s_j) > 100.0$

Coagulation and fragmentation probabilities

ISIMA 2011

Tail models: <u>coagulation probabilities</u> Tail + Porosity

Tail + II Coagulation

Tail + Bouncing

Brauer model

Tail model

 $V_{crit}(fragm) = V_{crit}(coag) = 30 m/s$

dN = # particles in a (0.001 AU) box

Results

Brauer

Brauer + porosity

Tail

Results

Tail + porosity

Tail model

Tail + bouncing

 $V_{crit}(fragm) = V_{crit}(coag) = 30 m/s$

V_{crit}(coag) = 10 m/s V_{crit}(frag) = 30 m/s

Brauer + II coag

Tail + II coag

Results

Best-case scenario: Tail + porosity + II coag (size ratio = 10)

 $V_{crit} = 30 \text{ m/s}$

 $V_{crit} = 100 \text{ m/s}$

Conclusion

- Brauer model: equilibrium in a few 100s years
- Tail model: <u>overcome critical size</u>
- Porosity: increase growth for Brauer / Tail model
- Bouncing region: no effect
- Second coagulation region: no effects (for ratio = 100), increase in max size (for ratio = 10)
- Best case scenario: formation of mm-size grains

Future work

- Collisional fusion (Wettlaufer 2011)
- Turbulence models (M. Rast's talk)
- Shift in critical velocities (size ratio of particles)

Thanks!!

THANKS!!

