Dynamos and Outflows in Simulations of Magnetized Collapsing Cores

Nathan Goldbaum (UCSC)

With substantial help and advice from Christoph Federrath and Ralf Klessen

As well as many others here at ISIMA

Magnetic Fields are Ubiquitous in Interstellar Space

Galaxy Cluster Abell 1689

Spiral Galaxy M51

Fletcher et al. 2011

The bulk of the Magnetic Energy of the Universe was Generated in Dynamos

Zel'dovich 'Stretch-Twist-Fold' Dynamo

The bulk of the Magnetic Energy of the Universe was Generated in Dynamos

Zel'dovich 'Stretch-Twist-Fold' Dynamo

$$\frac{d}{dt} \int_{V} \frac{\mathbf{B}^{2}}{8\pi} dV = -\int_{V} \mathbf{v} \cdot (\mathbf{J} \times \mathbf{B}) dV - \int_{V} \frac{J^{2}}{\sigma} dV - \int_{S} \frac{\mathbf{E} \times \mathbf{B}}{4\pi} d\mathbf{S}$$
$$\frac{d}{dt} \int_{V} \frac{1}{2} \rho \mathbf{v}^{2} dV = +\int_{V} p \nabla \cdot \mathbf{v} dV + \int_{V} \mathbf{v} \cdot (\mathbf{J} \times \mathbf{B}) dV + \int_{V} \rho \mathbf{v} \cdot \mathbf{g} dV$$

The Collapse of a primordial halo is a Unique Laboratory for Dynamo Theory

Thermodynamics

 $P \propto \rho^{1.1}$ $T_0 = 300 \text{ K}$

Cloud Parameters $M_{
m core} = 1.2 M_J$ $rac{E_{
m rot}}{E_{
m grav}} = 0.07$

Turbulence Parameters

$$B_{\rm RMS} = 1 \ \mu G$$

 $P_{\mathbf{v},\mathbf{B}}(k) \propto k^{-2}$

Magnetic Fields can be Generated on Small Scales...

Federrath et al. 2011

And on large scales...

And on large scales...

Induction:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

Lesch 1993

Induction:

Lesch 1993

Induction:

Take $B_r \sim constant$

Induction:

Take $B_r \sim constant$

$$B_{\phi} = \left(B_{\phi_0}(r_0) + \tau B_r r \frac{d\Omega}{dr} \right) \exp\left(\frac{t}{\tau}\right) - \tau B_r r \frac{d\Omega}{dr}$$

Where $\tau = -\frac{dv_r}{dr}$

Lesch 1993

A Disk Dynamo

A Disk Dynamo

A Disk Dynamo

Is this an artifact?

We need a resolution study!

Jeans Resolution

We refine based on the local Jeans Length

Regions of higher density are naturally more resolved

Can control the number of cells per Jeans length

 $\overline{\lambda}_J =$ 16, 32, and 64 cells

Jeans Resolution

Jeans Resolution

Jeans Resolution

 $\lambda_{\rm J}$ = 64 Cells

user: goldbaum Wed Aug 3 12:15:05 2011

Growth Rate Does Not Depend on Jeans Resolution

Jeans resolution criterion allows us to resolve the initial conditions with more cells

The disk is not necessarily more resolved at higher Jeans resolution

Disk resolution is determined by the maximum refinement level

Choose three effective resolutions: 2048³, 4096³, 8192³

Maximum Refinement Level

Maximum Refinement Level

Maximum Refinement Level

Generation of Large-Scale Fields

 $\beta = \frac{P_{\rm gas}}{P_{\rm mag}}$

Generation of Large-Scale Fields

Summary

- Perfomed MHD simulations of collapsing cores
- Observed dynamo generation of magnetic fields
- Field growth depends on effective resolution and not on Jeans resolution
- Generated outflow from an initially randomly oriented magnetic field!