

INTERNATIONAL
SUMMER
INSTITUTE FOR
MODELING IN
Astrophysics

Multi-Phase Turbulent ISM: Theory Confronting Observations

ISIMA student: Guang-Xing Li
Supervisors: Patrick Hennebelle and Nicolas Peretto

Outine

- Engineering- How do we make a star
- Observations

How Can You Make A Star?

10K

10K

C+

Converging Flow

cold $=7 \times 10^{-24}$
S.Walch - ISIMA - I2/07/201I

10

Hennebelle et al 2011

Converging Flow

$22.0 \square$

Summary 1

Turbulence

From Cores to Stars

Star Formation Engineering

The Observations

- CO data: GRS Galactic Ring Survey, 13CO(1-0)
- Stil et al. 2006
- 1 arcmin Resolution, (I from 18 deg to 52 deg)
- HI data: VLA Galactic Plane Survey
- Jackson et al. 2006, (I from 18 deg to 67 deg)

2 Degrees

at: -0.0053989919°

2 Degrees

Welocity: $+8.78 \mathrm{~km} / \mathrm{s}$

1009 b 04 b

A typical molecular cloud

Finding The CO HI Association

A typical molecular cloud

Star Formation Engineering

Star Formation Engineering

Do It Scientifically

Abstraction

- (x, y, A, v, sigma)

CO line Amp

$\frac{d N}{d A} \sim A^{-3.5}$

Star Formation Engineering

Line Intensity vs. Line Width

$\sigma \sim A^{1 / 2}$

- Larger Line Width at Higher Intensity?

$\sigma \sim A^{1 / 2}$

- Larger Line Width at Higher Intensity?
- Larger Velocity at Higher Column Density?

$\sigma \sim A^{1 / 2}$

- Larger Line Width at Higher Intensity?
- Larger Velocity at Higher Column Density?
- Self-Gravity!

$$
\begin{aligned}
& \rho_{\text {core }} \sim \text { const } \\
& m_{\text {core }} \sim \rho_{\text {core }} l_{\text {core }}^{3} \sim l^{3} \\
& \sigma \sim \sqrt{\frac{G M}{r}} \sim l \\
& A_{\text {co }} \sim \frac{m}{\sigma} \sim l^{2} \\
& \sigma \sim A_{c o}^{1 / 2}
\end{aligned}
$$

Line Intensity vs. Line Width

Summary

Summary

1.6
-1.4
-1.2
-1.0
-0.8
0.6
0.4
0.2
0.0

Is the source typical?

- We have to look at more sources

Is the source typical？

－We have to look at more sources
－ZALAIYIGE？再来一个？One more？
－We have many more sources！

G019.49+00. 29

G021.14+00.54

G032.46+00.54

G036.29+00.19

Turbulence Driven by Converging

 Flow?- Power-law Slope: Turbulence
- Cold HI gas: Converging Flow

Summary

1.6
-1.4
-1.2
-0.8
-0.6
-0.4
0.2
0.0
$\log 10\left(A_{C O} / K\right)$

