

INTERNATIONAL
SUMMER
INSTITUTE FOR
MODELING IN
ASTROPHYSICS

Multi-Phase Turbulent ISM: Theory Confronting Observations

ISIMA student: Guang-Xing Li

Supervisors: Patrick Hennebelle and Nicolas Peretto

Outline

- Engineering- How do we make a star
- Observations

Magnitude: **9.75** (B-V: 0.95) RA/DE (J2000): 11h58m31.1s/-16° 57'19.9" RA/DE (of date): 11h59m7s/-17° 1'12" Hour angle/DE: 7h51m2s/-17° 1'12" Az/Alt: +274° 8'57"/-31°57'46"

How Can You Make A Star?

Earth, Beijing, 53m

FOV 109°

32 FPS

2011-08-04 23:13:10

10K

Converging Flow

Converging Flow

Summary 1

Turbulence

Padoan's PPT

From Cores to Stars

Star Formation Engineering

The Observations

- CO data: GRS Galactic Ring Survey, 13CO(1-0)
 - Stil et al. 2006
 - 1 arcmin Resolution, (I from 18 deg to 52 deg)
- HI data: VLA Galactic Plane Survey
 - Jackson et al. 2006, (I from 18 deg to 67 deg)

Finding The CO HI Association

A typical molecular cloud

Star Formation Engineering

A typical molecular cloud

Star Formation Engineering

Do It Scientifically

• (x,y, A, v, sigma)

Star Formation Engineering

Line Intensity vs. Line Width

$\sigma \sim A^{1/2}$

Larger Line Width at Higher Intensity?

$\sigma \sim A^{1/2}$

- Larger Line Width at Higher Intensity?
- Larger Velocity at Higher Column Density?

$\sigma \sim A^{1/2}$

- Larger Line Width at Higher Intensity?
- Larger Velocity at Higher Column Density?
- Self-Gravity!

$$ho_{core} \sim const$$
 $m_{core} \sim \rho_{core} l_{core}^3 \sim l^3$
 $\sigma \sim \sqrt{\frac{GM}{r}} \sim l$
 $A_{co} \sim \frac{m}{\sigma} \sim l^2$
 $\sigma \sim A_{co}^{1/2}$

Line Intensity vs. Line Width

Summary

Summary

Is the source typical?

We have to look at more sources

Is the source typical?

- We have to look at more sources
 - ZALAIYIGE? 再来一个? One more?
- We have many more sources!

Turbulence Driven by Converging Flow?

 $log10(\sigma/(m/s))$

 $log10(\sigma/(m/s))$

Summary

