Day/night cold trap of TiO in hot Jupiters atmospheres

Vivien Parmentier with Adam Showman

1 mbar

Background : Abundance of Ti the solar nebula.

Background : presence of TiO/VO in brown dwarf

TiO: Titanium oxyde

The presence of the TiO absorption band define the separation between M dwarf and L dwarf.

Martin et al. 2010

Background : presence of TiO in hot Jupiter atmospheres ?

Background : presence of TiO in hot Jupiter atmospheres ?

Background : presence of TiO in hot Jupiter atmospheres ?

Background : Temperature inversion due to TiO

(Spiegel et al. 2009)

Background : Vertical cold trap

Particles diffuse to the cold region, condense and settle down.

Background : Vertical cold trap

Particles diffuse to the cold region, condense and settle down.

Background : Vertical cold trap

Particles diffuse to the cold region, condense and settle down.

Background : Day/night temperature contrast on hot Jupiter

Background : Superrotation on hot Jupiter

Background : Day/night cold trap on hot Jupiter

Background : Day/night cold trap on hot Jupiter

Settling : final velocity of a droplet in the atmosphere

а

V

Sphere of radius a falling in the fluid have a final velocity of :

$$V_{stokes} = a^2 \frac{2g\Delta\rho}{9\eta} \qquad \Delta\rho = \rho_{particle} - \rho_{fluid}$$

When the mean free path of the molecules becomes bigger than the size of the particle : β

$$V_{f} = (1 + 1.26 K_{N}) \cdot V_{stokes}$$

$$K_{N} = \frac{\lambda}{a} \qquad \lambda = \frac{k_{B}T}{\sqrt{2}\pi d^{2}} \cdot \frac{1}{P}$$

$$V_{f} \propto \frac{a}{P}$$

Settling : final velocity of droplets in the atmosphere

Settling : final velocity of droplets in the atmosphere

Diffusion : equations

$$\frac{\partial \chi}{\partial t} - \frac{\partial}{\partial P} \left(K_P \frac{\partial \chi}{\partial P} \right) = \frac{\partial V_P \chi}{\partial P}$$

1D – highly idealized toy model

Numerical model

Results: constrain on Kz

Results: comparison with the vertical cold trap

Results: comparison with the vertical cold trap

Results: comparison with the vertical cold trap

	Planet	g	F_*	Required K _{zz}		
		$(\mathrm{cm}\ \mathrm{s}^{-2})$	$(erg cm^2 s^{-1})$) $\overline{a = 0.1 \mu\mathrm{m}}$	$1 \ \mu m$	$10 \ \mu m$
	HD 209458b	1000	1.0	6.2×10^{8}	6.2×10^9	$6.5 imes 10^{10}$
	HD 149026b	1560	2.2	2.4×10^8	2.3×10^9	$2.6 imes 10^{10}$
	TrES-4	721	2.4	2.7×10^{8}	2.7×10^9	3.0×10^{10}
10 ¹³	OGLE-TR-56b	1850	5.5	1.2×10^{7}	2.1×10^{7}	8.7×10^{8}
10	WASP-12b	1090	9.3	$^{*}1.6 \times 10^{7}$	$*1.6 \times 10^{7}$	$^{*}1.6 \times 10^{7}$
1012						
10 ¹¹						
.0			100	0.6	0	
ਨੱ 10 ¹⁰					Š	
ස 10 ⁹				0.4	^	

Day/night cold trap for TiO should be as important as vertical cold trap. This gives greater constraints on Kz for very hot Jupiter

0.1 1 10 100 Particle size (μm)

Results : 3D simulation !

Thank you Adam !

Results : 3D simulation !

Thank you Adam !

P in bar

Future work

The presence or absence of TiO in hot Jupiter atmosphere depends strongly on the diffusivity of the flow

Measure the effective vertical mixing of the flow using tracers on a 3D simulation. Is the 1D mixing really diffusive ?

Different planets must have different conditions. We have to extend our work to hotter planet where the vertical cold trap is no more effective.

Run more simulations !