
A SIMPLE MODEL FOR UNDERSTANDING THE

DAY-NIGHT TEMPERATURE CONTRAST ON HOT

JUPITERS

Daniel Perez-Becker

Department of Physics, University of California, Berkeley, CA 94720, USA

and

Adam Showman

Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona,

Tucson, AZ 85721, USA

ISIMA 2011 Project Report

ABSTRACT

1. INTRODUCTION

Hot Jupiters are tidally locked extrasolar planets. Due to their synchronous rotation

about their host star, they have a permanent day- and night-side.

Their X day synchronous rotation periods are slow enough that Coriolis forces do not

dominate the flow as in the case of the giant planets in the solar system.

The intense heating contrast between the day and nightside drives global wind circula-

tion. ∼ 105 W/m2 irradiate the dayside of these planets and their nightsides cool via infrared

emission.

From Spitzer observations of the lightcurves emitted by the Star + planet, we can deter-

mine the temperature contrast of hot Jupiters (as a function of the phase angle). Variation

as a function of the orbital phase. From these you can infer a temperature. Maximum occurs

before the secondary eclipse which is interpreted as the hotspot being shifted eastwards of

the substellar point. Knutson et al. (2007).

This result is generally interpreted as the result of heat advection being the primary

mechanism for tranporting heat from the day to the nightside which requires individual air

parcels to
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This scenario leads to the not well justified rule of thumb used by workers that the

temperature contrast can be estimated by simply comparing the radiative timescale to the

advective timescale. (If radiative timescale is much less than advective timescale you expect

the contrast to be high, whereas in the opposite regime you expect a globally uniform

temperature). Indeed hot Jupiter simulations develop a superrotating jet with speeds on

the order of 1 km/s which can advect heat.

However there is another mechanism for planets to adjust their temperature and this

is due to gravity waves. Gravity waves can adjust to buoyancy forces caused by the lateral

heating gradient. Isentropes in the planet. On the dayside there is heating, which causes

lowering of the isentropes with respect to isobars. And in the nightside you obtain higher

values. The discontinuity will create pressure gradient forces that will radiate gravity waves

that go in both directions which will tend to flatten the isentrope (i.e., erase the temperature

gradient). This process is analogous to water waves in a pond.

This mechanism does not require large displacements of air parcels, it is purely a wave

mechanism. It acts on a different timescale than advection. This is the accepted mechanism

for setting the temperature on the Earth’s tropics, but has yet to be considered in the hot

Jupiter literature.

So which one is the relevant dynamical timescale that sets the temperature contrast on

hot Jupiters (is it the advective timescale or the gravity wave timescale)?

And also what it should it be compared against? The radiative timeconstant is one

option but there could be a frictional timeconstant involved. We would like to interpret data

like.

Phase amplitude over the secondary eclipse (related to temperature contrast). As you

increase the global mean temperature the amplitude increases.

2. SHALLOW-WATER MODEL

To study the heat transport mechanisms in the most simple possible context, we adopt

a highly idealized two-layer shallow-water model. The buoyant upper layer, constant in

density, represents the meteorologically active atmosphere of the extrasolar planet, while the

infinitely deep bottom layer with a higher density represents the convective interior of the

planet. In the limit where the lower-layer pressure gradients are in steady state (i.e, the

upper layer is in isotatic balance), this system reduces to the 2D shallow water equations for

the flow in the upper layer (Vallis 2006):
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dv

dt
+ g∇h + fk× v = R− v

τdrag

, (1)

∂h

∂t
+∇ · (vh) =

heq(λ, φ)− h

τrad

, (2)

where v(λ, φ, t) is the horizontal velocity, h(λ, φ, t) is the thickness of the the upper layer,

t is time, g the reduced gravity1, f = 2Ω sin φ is the Coriolis parameter, k is the upward

unit vector, Ω is the planetary rotation frequency, and (λ, φ) are longitudinal and latitudinal

angles. Here d/dt = ∂/∂t + v · ∇ is the material derivative.

The boundary between both layers represents an atmospheric isentrope, across which

mass flows in the presence of heating and cooling. Thus, heat transfer is represented as

mass sources and sinks in the shallow water model. We model heat transfer with Newtonian

relaxation of the height filed h towards heq—set by radiative equilibrium—over a radiative

time scale τrad, which we treat as a free parameter.

The momentum Equation (1) includes the drag timescale τdrag mentioned previously

and the R term, which represents the effect of momentum advected with mass transfer from

the lower layer into the upper layer introduced by Showman & Polvani 2011. In this work

we set R = 0 for simplicity.

We will study heat transport processes with shallow-water models of ever increasing

complexity. In Section 2.1 we begin by study a even more idealized system that still captures

all the relevant physics. We derive this model from Equations (1) & (2), with two further

simplifying approximations: First, we drop all φ-dependence from the system (including the

Coriolis term), focusing on the tropical belt. We present linear analytic solution to this

system. In Section 2.2, we compare our results from our simple 1D model with the linear

solutions of Equations (1) & (2) given by Showman & Polvani (2011). Finally, in Section

2.3 we compare the results with the fully non-linear solutions determined numerically.

2.1. Linearized 1D Shallow Water Model at Planetary Equator

Our tropical 1D-version of the shallow water model in cartesian geometry reads

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= − v

τdrag

, (3)

1g = ρlower−ρupper
ρupper

GMplanet

R2
planet
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∂h

∂t
+

∂

∂x
(vh) =

heq(λ)− h

τrad

, (4)

where x is the eastward distance.

We linearize Equations (3) & (4) about a constant reference height H and a constant

eastward zonal wind speed ū.

∂u

∂t
+ ū

∂u

∂x
+ g

∂η

∂x
= − u

τdrag

− ū

τdrag

, (5)

∂η

∂t
+ ū

∂η

∂x
+ H

∂u

∂x
=

ηeq(λ)− η

τrad

, (6)

where u is the deviation of the flow velocity from ū, such that v = ū + u. Analogously, η is

the deviation of the thickness from H, such that h = H + η and ηeq = heq −H.

We drop the term ū/τdrag from Equation (5) as it is balanced by...

Most three-dimensional models of tidally locked exoplanets relax to steady circulation

patterns (Showman & Guillot 2002; Cooper & Showman 2005, 2006), and we therefore seek

solutions in the presence of external forcing and damping.

We nondimensionalize Equations (5) & (6) with a lengthscale L = 2π/k, a velocity scale

U =
√

gH, and a timescale T = (k
√

gH)−1, which correspond respectively to the wavelength

of the thermal forcing (∼ planetary circumference), the gravity wave speed, and the time

for a gravity wave to cross L. The thickness is nondimensionalized with H and the thermal

and drag time constants with T . In steady state we obtain the equations,

ū
∂u

∂x
+

∂η

∂x
= − u

τdrag

, (7)

ū
∂η

∂x
+

∂u

∂x
=

ηeq − η

τrad

, (8)

where all quantities are now nondimensional.

Equations (7) & (8) can be combined to yield a single second-order differential equation

for η or u. We seek solutions for the unknowns η and u for a given thermal forcing ηeq/τrad.

For tidally locked exoplanets we expect thermal forcing to be an oscillating function cor-

responding to the day-night variation in heating/cooling of the planet. For simplicity we

choose a pattern of heating and cooling pattern that is sinusoidally varying in longitude

ηeq = ∆ηeq cos(kx) with the maximum centered at the substellar point and the minimum at

its antipode.
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Appendix A gives the details

This background velocity which will play the role of advection and give the advective

timescale.

In this simple model there are four relevant timescales: The radiative timescale for heat-

ing and cooling, the drag timescale which we parametrize and can represent MHD friction,

turbulent mixing. There is also the advection timescale and the wave timescale.

We keep the wave timescale 1/
√

(gh) constant and normalize all other time constants

to this value.

First show solutions in limits familiar. Solution for very strong drag, meaning that

gravity wave transport is suppressed and the only heat transport is due to advection. Initially

we have a very low advection speed and the solution relaxes to the radiative equilibrium

curve. As we increase the advection speed, the hotspot is shifted towards the east and the

day-night temperature contrast is reduced (amplitude of curve).

In the low drag limit, even without advection, the gravity waves already have adjusted

the temperature contrast of the atmosphere. Large increases in amplitude and excursions of

the hotspot, both in the eastern and western direction occur when the advection velocity is

increased.

When the advection velocity is very high, the system reaches a state where advection

completely dominates over gravity waves and drag becomes irrelevant.

Rainbow plot: Solutions to our system of equations as a function of the radiative and

drag timescales. Each frame is for a different advection time. Contours: Red: Temperature

set by radiative equilibrium (amplitude is high). When low, temperature has been homog-

enized by gravity waves (because there is no advection in this frame). In this limit the

radiative and drag timeconstants play complimentary roles (if you decrease one and increase

the other by the same amount, you obtain the same solution).

Advancing the advection timescale we observe a complex series of behaviors. We sepa-

rate the solution into four regimes.

Advection regime: Advection speed less than the wave speed. You get weird three

thoghed behavior.

Advection speed is equal to the wave speed: Solution shows hangover pattern. The

solution is in phase with the forcing and that raises the amplitude.

Advection timescale much grater than the wave timescale: Regime where drag becomes
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η0/∆ηeq ū =3.0e-01

0.00

0.15

0.30

0.45

0.60

0.75

0.90

−2 −1 0 1 2 3
log(τrad)

−2

−1

0

1

2

3

lo
g(
τ d

ra
g
)

η0/∆ηeq ū =1.0e+00
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η0/∆ηeq ū =3.0e+00

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Fig. 1.— my caption

irrelevant.

Which one applies to hot Jupiters? Advection jet speeds are between 1 and 3 km/s and

the wave speed for the same planets is 2 km/s. We are in the regime where both terms are

important.

New plot: Advection over the radiative timescale: Each plot for a different radiative

timescale (all three reasonable assumptions for hot Jupiters). All three limits can be present:
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advetion dominated regime, phase maching resonant behaviour, regime where wave transport

dominates. (solution depend strongly on drag)

2.2. Linearized 2D Shallow Water Model

Compare toy model with simulations of ever increasing complexity. First with 2D shal-

low water model in the linear regime. In the linear regime, the shallow water equations can

be solved analytically Showman & Polvani (2011).

If the raditive and drag time are very short, the solution matches the forcing. (Forcing

hotspot on the center of the substellar point and cooling on the nightside). As you increase

either drag or the radiative timescale, you can see nice rosby and kelvin patterns developing,

which cause a superrotating jet. When both timescales are high, the solution dominated by

off-equator cyclones and anticyclones.The amplitude is small.

If you do a plot in the same parameter space as we did before, you can see it compares

well. We can only compare these two frames, because the know solution is linearized about

a state of rest. For the zero-advection speed the qualitative match is quite good.

2.3. Fully Non-Linear 2D Shallow Water Model

We can also solve the full shallow water equations numerically. There solution differs

substantially from the linear behavior and you can make the same comparison. (with finite

mean motions). You see the kink appearing.

Make a cut through the data and you can see solution saturating. You can qualitative

comparisions with previous plot.

From the numerical solutions, we can make lightcurves of how the planet would look

like when viewed from Earth. Phase shift of the hotpsot in the parameter space. Negative

(purple) corresponds to an eastward shift in the jet and high values correspond to westward

shifted hotspots. For westward shifts, the contrast between the day and nightside temper-

ature is extremely low. Eastward hotspots are easier to detect because they generally have

larger amplitudes.
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3. OUTLOOK

We are working on how to best digest our solution into meaningful statements.

Talk about rossby deformation radius:

Natural length scale over which flows can occur on planets. Wave behavior occurs on

these length scales.
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