### Dynamics in Young Star Clusters

From Planets to Massive Stars

Christoph Olczak ARI & MPIA, Heidelberg; NAOC, Beijing

Collaborators:

Rainer Spurzem (NAOC & KIAA, Beijing; ARI, Heidelberg)

Thomas Henning, Wolfgang Brandner (MPIA, Heidelberg)

Susanne Pfalzner, Thomas Kaczmarek (MPIfR Bonn)

Andrea Stolte, Benjamin Hussmann (AlfA Bonn)

Simon Portegies Zwart, Stefan Harfst (Leiden Univ., TU Berlin)

#### ISIMA 2011: Star and Planet Formation

#### Outline

### Outline

### 1 Star-disc encounters in Young Star Clusters

- Introduction: Stars, discs, and planets
- Numerical Method
- Stellar interactions in the ONC
- Stellar interactions in sparse and dense star clusters
- Stellar interactions in the Arches Cluster

#### 2 Mass Segregation in Young Star Clusters

- Motivation
- The Minimum Spanning Tree (MST)
- $\bullet$  An improved algorithm:  $\Gamma_{\rm MST}$
- $\bullet$  Applying  $\Gamma_{\rm MST}$

### 3 Summary

### Some facts about star and planet formation

Planets and their hosts:

- stars form with dusty discs
  - $\Rightarrow$  protoplanetary discs
- protoplanetary discs serve as hosts of planet formation
- $\bullet\,$  protopl. discs last for  $\lesssim 10\,{\rm Myr}$



Ori 114-426 O'Dell & Beckwith (1997)



HR 8799 Marois et al. (2010)

Stars and their hosts:

- up to 90% of all stars form in clusters (Lada & Lada, 2003; Evans et al., 2009)
- 50% of all stars form in *massive* clusters (*N* > 1000)
- $\bullet\,$  star clusters last for  $\gtrsim 10\,{\rm Myr}$



IC 348 Muench et al. (2003)



NGC 3603 Brandl et al. (2001)

### Some facts about star and planet formation

Planets and their hosts:

- stars form with dusty discs
  - $\Rightarrow$  protoplanetary discs
- protoplanetary discs serve as hosts of planet formation
- $\bullet\,$  protopl. discs last for  $\lesssim 10\,{\rm Myr}$



Ori 114-426 O'Dell & Beckwith (1997)



HR 8799 Marois et al. (2010)

Stars and their hosts:

- up to 90% of all stars form in clusters (Lada & Lada, 2003; Evans et al., 2009)
- 50% of all stars form in *massive* clusters (*N* > 1000)
- $\bullet\,$  star clusters last for  $\gtrsim 10\,{\rm Myr}$



IC 348 Muench et al. (2003)



NGC 3603 Brandl et al. (2001)

### $\Rightarrow$ star and planet formation is affected by the cluster environment

### Some facts about star and planet formation

Planets and their hosts:

- stars form with dusty discs
  - $\Rightarrow$  protoplanetary discs
- protoplanetary discs serve as hosts of planet formation
- $\bullet\,$  protopl. discs last for  $\lesssim 10\,{\rm Myr}$



Ori 114-426 O'Dell & Beckwith (1997)



HR 8799 Marois et al. (2010)

Stars and their hosts:

- up to 90% of all stars form in clusters (Lada & Lada, 2003; Evans et al., 2009)
- 50% of all stars form in *massive* clusters (*N* > 1000)
- $\bullet\,$  star clusters last for  $\gtrsim 10\,{\rm Myr}$



IC 348 Muench et al. (2003)



NGC 3603 Brandl et al. (2001)

 $\Rightarrow$  star and planet formation is affected by the cluster environment

 $\Rightarrow$  investigation of the effect of stellar encounters on protoplanetary discs

# The dynamically outstanding role of massive stars

The effect of stellar encounters is dominated by massive stars twofold:

Gravitational focusing

Mass-ratio dependent perturbation

# The dynamically outstanding role of massive stars

Star-disc encounters in Young Star Clusters Introduction: Stars, discs, and planets

The effect of stellar encounters is dominated by massive stars twofold:

#### Gravitational focusing

Mass-ratio dependent perturbation

$$b^{2} = r_{enc}^{2} \left( 1 + \frac{2GMm}{\mu r_{enc}v^{2}} \right) = r_{enc}^{2} (1+\Theta)$$

 $\Rightarrow$  b  $\approx$  330 AU  $\rightarrow$  r<sub>enc</sub> = 100 AU

Christoph Olczak (ARI, MPIA, NAOC)

# The dynamically outstanding role of massive stars

Young Star Clusters

The effect of stellar encounters is dominated by massive stars twofold:

#### Gravitational focusing



#### Mass-ratio dependent perturbation

Introduction: Stars, discs, and planets



50 M<sub> $\odot$ </sub> perturber at  $r_{\rm enc} = 500 \, \text{AU}$  $0.5 \,\mathrm{M}_{\odot}$  perturber at  $r_{\mathrm{enc}} = 100 \,\mathrm{AU}$ Disc destruction (97 % mass loss): 50 M<sub> $\odot$ </sub> perturber at  $r_{\rm enc} = 100$  AU.

Christoph Olczak (ARI, MPIA, NAOC)

### Realization of the numerical simulations



## Realization of the numerical simulations





Christoph Olczak (ARI, MPIA, NAOC)

**Dynamics in Young Star Clusters** 

#### Star-disc encounters in Young Star Clusters Numerical Method

### Realization of the numerical simulations







Christoph Olczak (ARI, MPIA, NAOC)

**Dynamics in Young Star Clusters** 

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs !

|   |   | СРИ                     | GPU | GRAPE             |
|---|---|-------------------------|-----|-------------------|
| I | s | NBODY1-3,5 <sup>1</sup> |     | NBODY4 <b>1,2</b> |
|   | р |                         |     |                   |
| П | s | NBODY6 <sup>1</sup>     |     |                   |
|   | р |                         |     |                   |

<sup>1</sup> S. Aarseth, <sup>2</sup> J. Makino, <sup>3</sup> R. Spurzem, <sup>4</sup> S. Harfst, <sup>5</sup> P. Berczik, <sup>6</sup> K. Nitadori

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs!

|   |   | СРИ                     | GPU                | GRAPE                        |
|---|---|-------------------------|--------------------|------------------------------|
| I | s | NBODY1-3,5 <sup>1</sup> |                    | NBODY4 <b>1,2</b>            |
|   | р |                         | $arphi^{ m GPU}^4$ | $arphi^{\mathrm{GRAPE}^{3}}$ |
| П | s | NBODY6 <sup>1</sup>     | NBODY6             | -GPU <sup>1,5</sup>          |
|   | р | $NBODY6^{++2}$          |                    |                              |

<sup>1</sup> S. Aarseth, <sup>2</sup> J. Makino, <sup>3</sup> R. Spurzem, <sup>4</sup> S. Harfst, <sup>5</sup> P. Berczik, <sup>6</sup> K. Nitadori

#### r-disc encounters in Young Star Clusters Numerical Method

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs !

 $\rightarrow$  More than one order of magnitude gain for large systems!



#### r-disc encounters in Young Star Clusters Numerical Method

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs !

 $\rightarrow$  More than one order of magnitude gain for large systems!



### The next step: parallelization ( $\beta$ -stage)

NBODY6++GPU: simulations of clusters of star-discs systems with  $10^8$  particles.



Christoph Olczak (ARI, MPIA, NAOC)

Dynamics in Young Star Clusters

Numerical evolution of the dynamical model of the ONC ( $t \approx 1$  Myr). Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

- $\rightarrow$  Stellar encounters lead to significant disc destruction (Olczak et al., 2006):
  - $\bullet~\sim~5\,\%$  discs destroyed in entire cluster
- $(R = 2.5 \, \text{pc})$
- $\sim 20$  % discs destroyed in cluster core
- $(R = 0.3 \,\mathrm{pc}, \,\,$  "Trapezium Cluster")



Numerical evolution of the dynamical model of the ONC ( $t \approx 1$  Myr). Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

- → Stellar encounters lead to significant disc destruction (Olczak et al., 2006):
  - $\sim$  5% discs destroyed in entire cluster ( $R = 2.5 \, \mathrm{pc}$ )
  - $\sim 20$  % discs destroyed in cluster core

 $(R = 0.3 \,\mathrm{pc}, \,\,$  "Trapezium Cluster")

→ High-mass stars dominate interactions: "gravitational foci" (Pfalzner et al., 2006).



Numerical evolution of the dynamical model of the ONC ( $t \approx 1$  Myr). Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

- → Stellar encounters lead to significant disc destruction (Olczak et al., 2006):
  - $\sim$  5% discs destroyed in entire cluster ( $R = 2.5 \, \mathrm{pc}$ )
  - $\sim 20\%$  discs destroyed in cluster core

 $(R = 0.3 \,\mathrm{pc}, \,\,$  "Trapezium Cluster")

→ High-mass stars dominate interactions: "gravitational foci" (Pfalzner et al., 2006).



Numerical evolution of the dynamical model of the ONC ( $t \approx 1$  Myr). Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

#### Conclusion

#### Gravitational interactions in star clusters

- **()** cause very rapid disc destruction,
- Over disc frequency close to massive stars (independent of photoevaporation!),
- **()** make planet formation around massive stars improbable.



### Encounter-induced angular momentum loss in the ONC

Investigation of the angular momentum loss (AML) in the ONC over time ( $t \approx 1 \text{ Myr}$ ).

→ Stellar encounters lead to 3-5 % average AML in the ONC (Pfalzner & Olczak, 2007).

 $\Rightarrow$  Pronounced spiral arm structure triggered by encounters in most of the cluster stars.



### Encounter-induced angular momentum loss in the ONC

Investigation of the angular momentum loss (AML) in the ONC over time ( $t \approx 1 \, \text{Myr}$ ).

→ Stellar encounters lead to 3-5 % average AML in the ONC (Pfalzner & Olczak, 2007).

 $\Rightarrow$  Pronounced spiral arm structure triggered by encounters in most of the cluster stars.

→ Planet formation in triggered overdensities might be common. (see Rice et al., 2004, 2006; Clarke & Lodato, 2009)



Star-disc encounters in Young Star Clusters Stellar interactions in the ONC

### Encounter-induced angular momentum loss in the ONC

Investigation of the angular momentum loss (AML) in the ONC over time ( $t \approx 1 \text{ Myr}$ ).

#### Conclusion

#### Gravitational interactions in star clusters

- **()** cause significant perturbations of most protoplanetary discs,
- **2** potentially trigger "synchronous" planet formation.



### Numerical models of ONC-like star clusters

Using standard ONC-model for construction of additional models.

 $\rightarrow$  variation of size (*R*), density ( $\rho$ ), and particle number (*N*)

Two families of models:

In total 11 cluster models with 1k, 2k, 4k, 8k, 16k, and 32k particles:

| family         | 1k | 2k | 4k    | 8k         | 16k | 32k |
|----------------|----|----|-------|------------|-----|-----|
| size-scaled    | S0 | S1 | S2/D2 | <b>S</b> 3 | S4  | S5  |
| density-scaled | D0 | D1 | (ONC) | D3         | D4  | D5  |

### Disc destruction in different cluster environments

CDF evolution of density-scaled cluster models (within  $R = 0.3 \,\text{pc}$ , "Trapezium Cluster").

 $\rightarrow$  trend as expected: CDF decreases with higher density



### Disc destruction in different cluster environments

CDF evolution of density-scaled cluster models (within  $R = 0.3 \,\text{pc}$ , "Trapezium Cluster").

 $\rightarrow$  trend as expected: CDF decreases with higher density



### Disc destruction in different cluster environments

CDF evolution of density-scaled cluster models (within  $R = 0.3 \,\text{pc}$ , "Trapezium Cluster").

- $\rightarrow$  trend as expected: CDF decreases with higher density
- $\rightarrow$  "critical density" of ONC: 2-4 times denser systems show much higher disc destruction
  - $\Rightarrow$  in agreement with observations?



Star-disc encounters in Young Star Clusters Stellar interactions in the Arches Cluster

Towards an extreme environment: the Arches Cluster.







The Arches Cluster is one of the densest and most massive young star clusters in the Milky Way:  $M \gtrsim 2 \cdot 10^4 M_{\odot}, \ \rho \gtrsim 10^5 M_{\odot} \text{ pc}^{-3}, \ t \approx 2 \text{ Myr}$ 

Christoph Olczak (ARI, MPIA, NAOC)

Dynamics in Young Star Clusters

Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).

Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):

 $\rightarrow$  only few discs are not destroyed via encounters



Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).

Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):

- $\rightarrow$  only few discs are not destroyed via encounters
- $\rightarrow$  discs survive preferentially around stars of  $\sim 10\,M_\odot$  (spectral type B)



Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).

Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):

- $\rightarrow$  only few discs are not destroyed via encounters
- ightarrow discs survive preferentially around stars of  $\sim 10\,M_{\odot}$  (spectral type B)

 $\Rightarrow$  agreement with observations by Stolte et al. (2010)



Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).

Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):

#### Conclusion

Gravitational interactions in starburst clusters

- **()** destroy nearly all environments of planet formation,
- **2** make B-type stars the most probable hosts of planetary systems.



### A new efficient measure of mass segregation

#### Problem

- Do young star clusters really show evidence for mass segregation?
- Is the observed mass segregation in young clusters due to initial conditions (i.e. primordial)?
- Does the observed degree of (dynamical) mass segregation in old clusters agree with theory?

### A new efficient measure of mass segregation

#### Problem

- Do young star clusters really show evidence for mass segregation?
- Is the observed mass segregation in young clusters due to initial conditions (i.e. primordial)?
- Does the observed degree of (dynamical) mass segregation in old clusters agree with theory?

#### Goal

Efficient measure of mass segregation for observational and numerical data.

- Geometrically independent.
- Independence of quantitative mass measurement.
- Numerical robustness.
- Simple, intuitive measure.

### A new efficient measure of mass segregation

#### Problem

- Do young star clusters really show evidence for mass segregation?
- Is the observed mass segregation in young clusters due to initial conditions (i.e. primordial)?
- Does the observed degree of (dynamical) mass segregation in old clusters agree with theory?

#### Goal

Efficient measure of mass segregation for observational and numerical data.

- Geometrically independent.
- Independence of quantitative mass measurement.
- Numerical robustness.
- Simple, intuitive measure.
- ⇒ Minimum Spanning Tree (MST)



#### Definition

 $\textbf{MST} \equiv \textbf{shortest}$  connecting graph of all vertices without closed loops.

Measuring mass segregation via the MST

### Quantifying mass segregation: $\Lambda_{\rm MST}$

The *length* of the MST,  $I_{\rm MST}$ , as a measure of mass segregation (Allison et al., 2009):

**()** Calculate  $I_{MST}$  of the *n* most massive stars:

$$I_{\rm MST}^{\rm mass} = \sum_{i=1}^{n} e_i$$

2 Calculate  $< l_{MST} >$  of k sets of n random stars:

$$I_{
m MST}^{
m ref},\,\Delta I_{
m MST}^{
m ref}$$

**3** Normalization:  $\Lambda_{MST} = \frac{I_{MST}^{ref}}{I_{MST}^{mass}}$ 

 $\Lambda_{\rm MST}>1:$  massive stars more concentrated than reference sample.

 $\Rightarrow$  Quantitative measure of the degree of mass segregation.

• Standard deviation: 
$$\Delta \Lambda_{\rm MST} = \frac{\Delta I_{\rm MST}^{\rm ref}}{I_{\rm MST}^{\rm mass}}$$

 $\Rightarrow$  Quantitative measure of the significance of the result.

Measuring mass segregation via the MST

### Quantifying mass segregation: $\Lambda_{\rm MST}$

The length of the MST,  $I_{\rm MST}$ , as a measure of mass segregation (Allison et al., 2009):

• Standard deviation: 
$$\Delta \Lambda_{\rm MST} = \frac{\Delta I_{\rm MST}^{\rm ref}}{I_{\rm MST}^{\rm mass}} \boxed{\Delta \Gamma_{\rm MST} = \Delta \gamma_{\rm MST}^{\rm ref}}$$

 $\Rightarrow$  Quantitative measure of the significance of the result.

#### An improved measure of mass segregation: $\Gamma_{\rm MST}$

Use the *geometric mean*  $\Gamma_{MST}$  of the edges rather than their sum  $\Lambda_{MST}$  (Olczak et al., 2011).  $\Rightarrow$  Acts as an intermediate pass that damps contributions from extreme edge lengths.

Christoph Olczak (ARI, MPIA, NAOC)

Dynamics in Young Star Clusters

### Measuring the degree of mass segregation in model star clusters

Star cluster with single stars and Kroupa (2001) mass function in the range  $0.08 - 150 \text{ M}_{\odot}$ . Initial mass segregation due to prescription of Šubr et al. (2008): parametrization via  $S \in (1, 0]$ .

> Number of stars: N = 1k Index of mass segregation: S = 0.3



Figure: 5, 10, 20, 50, 100, 200, 500, 1000 most massive stars.

Figure:  $R_{hm}$  (red),  $1/2R_{hm}$  (green),  $1/4R_{hm}$  (blue).

- Analysis via cumulative and differential mass groups:
  - $\rightarrow$  Very strong segregation of the five most massive stars.



Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars.

- Analysis via cumulative and differential mass groups:
  - $\rightarrow$  Very strong segregation of the five most massive stars.
- Effect of incompleteness ( $N = 929 \rightarrow 485$ ):



Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars.

Figure: Completeness model as a function of stellar mass and radial position.

- Analysis via cumulative and differential mass groups:
  - $\rightarrow$  Very strong segregation of the five most massive stars.
- Effect of incompleteness ( $N = 929 \rightarrow 485$ ):  $\Gamma_{\rm MST}$  rises for most massive stars.



Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars.

Figure: Incomplete sample: 485 stars.

- Analysis via cumulative and differential mass groups:
  - $\rightarrow$  Very strong segregation of the five most massive stars.
- Effect of incompleteness (N = 929  $\rightarrow$  485):  $\Gamma_{\rm MST}$  rises for most massive stars.
- Sample reconstruction ( $N = 485 \rightarrow 830$ ) via inverse individual completeness.



Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars.

Figure: Reconstructed sample: 830 stars.

#### Mass Segregation in Young Star Clusters Applying Excern

### Dynamical evolution of mass segregation

Single star cluster (spherically symmetric, no substructure):

- density distribution: isothermal
- velocity distribution: Maxwell
- $\rightarrow$  Very rapid dynamical mass segregation within few  $t_{\rm dyn}$ .

(As expected:  $t_{
m seg} pprox rac{<m>}{m} rac{N}{8 \ln N} t_{
m dyn} pprox t_{
m dyn}.)$ 

1k



Figure: 5, 10, 20, 50, 500 most massive stars.

- virial ratio: Q = 0.1
- particle numbers:  $N = \{1k, 10k\}$

10k

#### Stellar interactions in young star clusters

Stellar encounters affect the star and planet formation process in a huge variety:

- Massive stars (in the ONC) act as gravitational foci.
- Most star-disc systems are (weakly) perturbed: triggering of planet formation?
- Critical density of ONC: transition of dominant mode of disc destruction.
- Arches cluster: potential planet formation around B-type stars.

#### Mass segregation in young star clusters

Mass segregation in young star clusters is a key observable of the star formation process:

- New measure of mass segregation:  $\Gamma_{\rm MST}=$  Minimum Spanning Tree + geometrical mean.
  - $\rightarrow \Gamma_{\rm MST}$  highly advantageous over classical  $\Lambda_{\rm MST}$  method.
- ONC shows significant segregation of massive members.
- Very rapid mass segregation of young star clusters.

#### A three-step procedure

- **0** 2D Delaunay triangulation of a three-dimensional set of vertices (GEOMPACK: Joe, 1991)
- Osting of triangles' edges in ascending order (and removal of duplicates).
- Oconstruction of MST via Kruskal's algorithm (with an efficient union-find-algorithm).

#### A three-step procedure

- **0** 2D Delaunay triangulation of a three-dimensional set of vertices (GEOMPACK: Joe, 1991)
- Osting of triangles' edges in ascending order (and removal of duplicates).
- Oconstruction of MST via Kruskal's algorithm (with an efficient union-find-algorithm).

### Delaunay triangulation (in the plane)

No point in set of points P is inside the circumcircle of any triangle in DT(P).



#### A three-step procedure

- **0** 2D Delaunay triangulation of a three-dimensional set of vertices (GEOMPACK: Joe, 1991)
- Osting of triangles' edges in ascending order (and removal of duplicates).
- Oconstruction of MST via Kruskal's algorithm (with an efficient union-find-algorithm).

### Delaunay triangulation (in the plane)

No point in set of points P is inside the circumcircle of any triangle in DT(P).



#### A three-step procedure

- **0** 2D Delaunay triangulation of a three-dimensional set of vertices (GEOMPACK: Joe, 1991)
- **2** Sorting of triangles' edges in ascending order (and removal of duplicates).
- Oconstruction of MST via Kruskal's algorithm (with an efficient union-find-algorithm).

#### Kruskal's algorithm

- Remove the next shortest edge from the graph.
- 2 Check whether it forms a close loop with the edges of the MST.
- If not, add it to the MST.

#### An efficient union-find algorithm

- Union-by-rank: merge smaller tree of nodes into larger tree.
- Path compression: connect nodes with the tree root.

Annendix

# Computational cost of the MST

### Definition

|E|: number of edges

- |V|: number of vertices
  - Olaunay triangulation:

$$\mathcal{O}(|V| \cdot \log |V|). \tag{1}$$

Ø Sorting of edges:

$$\mathcal{O}(|E| \cdot \log(|E|)). \tag{2}$$

Union-find algorithm:

$$\mathcal{O}(|E| \cdot \log^* |V|), \qquad (3)$$

where

$$\log^*(n) = \min\left\{s \in \mathbb{N} \mid \underbrace{\log(\log(\ldots\log(n)\ldots))}_{s \text{ times}} \leq 1\right\}$$

 $\Rightarrow$  In practice constant (though in principle unlimited).

The total computational cost is  $\mathcal{O}(|V| \cdot \log |V|)$ .

Christoph Olczak (ARI, MPIA, NAOC)

Dynamics in Young Star Clusters

# Artificial configurations of mass segregation

The power of  $\Gamma_{\rm MST}$  for some simple setups of artificial mass segregation.

Three artificial configurations of massive stars with identical  $\Lambda_{\rm MST}$  – but different  $\Gamma_{\rm MST}$  - in a model star cluster:

- "cross"
- "ring"
- "clump" ۰





Appendix Testing EMST

Christoph Olczak (ARI, MPIA, NAOC)

**Dynamics in Young Star Clusters** 

**ISIMA 2011** Jun 27 - Aug 5, 2011

### Measuring the degree of mass segregation in model star clusters

Star cluster with single stars and Kroupa (2001) mass function in the range  $0.08 - 150 \text{ M}_{\odot}$ . Initial mass segregation due to prescription of Šubr et al. (2008): parametrization via  $S \in (1, 0]$ .

Appendix Testing EMST

Number of stars: N = 1k Index of mass segregation: S = 0.3



Figure: 5, 10, 20, 50, 100, 200, 500, 1000 most massive stars.

Figure: Rhm (red), 1/2Rhm (green), 1/4Rhm (blue).

#### References

Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, MNRAS, 395, 1449

- Brandl, B., The Ngc 3603 Team, & The 30 Doradus Team. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 243, From Darkness to Light: Origin and Evolution of Young Stellar Clusters, ed. T. Montmerle & P. André, 505–+
- Clarke, C. J. & Lodato, G. 2009, MNRAS, 398, L6
- Espinoza, P., Selman, F. J., & Melnick, J. 2009, A&A, 501, 563
- Evans, N. J., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS, 181, 321
- Harfst, S., Portegies Zwart, S., & Stolte, A. 2009, ArXiv e-prints
- Hillenbrand, L. A. 1997, AJ, 113, 1733
- Joe, B. 1991, Advances in Engineering Software, 13, 325
- Kroupa, P. 2001, MNRAS, 322, 231
- Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57
- Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., & Barman, T. 2010, Nature, 468, 1080
- Muench, A. A., Lada, E. A., Lada, C. J., et al. 2003, AJ, 125, 2029
- O'Dell, C. R. & Beckwith, S. V. W. 1997, Science, 276, 1355
- Olczak, C., Pfalzner, S., & Spurzem, R. 2006, ApJ, 642, 1140
- Pfalzner, S. & Olczak, C. 2007, A&A, 462, 193
- Pfalzner, S., Olczak, C., & Eckart, A. 2006, A&A, 454, 811

Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. 2002, ApJ, 565, 265

- Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J., & Bonnell, I. A. 2004, MNRAS, 355, 543
- Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J., & Bonnell, I. A. 2006, MNRAS, 372, L9
- Stolte, A., Morris, M. R., Ghez, A. M., et al. 2010, ApJ, 718, 810
- Šubr, L., Kroupa, P., & Baumgardt, H. 2008, MNRAS, 385, 1673