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Introduction: Stars, discs. and planets
Some facts about star and planet formation

Planets and their hosts: Stars and their hosts:
@ stars form with dusty discs @ up to 90 % of all stars form in clusters
= protoplanetary discs (Lada & Lada, 2003; Evans et al., 2009)
@ protoplanetary discs serve as hosts of @ 50 % of all stars form in massive clusters
planet formation (N > 1000)
e protopl. discs last for < 10 Myr o star clusters last for = 10 Myr

L)

Ori 114—.426 HR 8799 IC 348 NGC 3603
O'Dell & Beckwith (1997)

Marois et al. (2010) Muench et al. (2003) Brandl et al. (2001)
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Introduction: Stars, discs. and planets
Some facts about star and planet formation

Planets and their hosts: Stars and their hosts:
@ stars form with dusty discs @ up to 90 % of all stars form in clusters
= protoplanetary discs (Lada & Lada, 2003; Evans et al., 2009)
@ protoplanetary discs serve as hosts of @ 50 % of all stars form in massive clusters
planet formation (N > 1000)
e protopl. discs last for < 10 Myr o star clusters last for = 10 Myr

Ori 114-426

) - HR 8799 1C 348 NGC 3603
O'Dell & Beckwith (1997) Marois et al. (2010) Muench et al. (2003) Brandl et al. (2001)
= star and planet formation is affected by the cluster environment J

= investigation of the effect of stellar encounters on protoplanetary discs J
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Introduction: Stars, discs. and planets
The dynamically outstanding role of massive stars

The effect of stellar encounters is dominated by massive stars twofold:

Gravitational focusing Mass-ratio dependent perturbation
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Introduction: Stars, discs. and planets
The dynamically outstanding role of massive stars

The effect of stellar encounters is dominated by massive stars twofold:

Gravitational focusing Mass-ratio dependent perturbation
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Introduction: Stars, discs. and planets
The dynamically outstanding role of massive stars

The effect of stellar encounters is dominated by massive stars twofold:

Gravitational focusing Mass-ratio dependent perturbation
) GMm Rel. disc-mass loss vs. rel. perturber mass
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Orion: M =50Mg, m = 0.5Mg Disc destruction (97 % mass loss):
= b=~ 330AU — renc = 100AU J 50 M@ perturber at renc = 100 AU.
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Stai

Realization of the numerical simulations

c encounter. Young Star Clusters Numerical Method

simulations of star cluster dynamics
(pure particle model, ~1000 simulations)
— direct N-body codes NBODY6++, NBODY6-GPU

\;—J

’tracking of encounters ‘

|

record of encounter

parameters
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Numerical Method
Realization of the numerical simulations

parameterized fit formula
for effect of encounters:
- disc mass

- angular momentum

parameter study of star-disc encounters
(pure particle model, ~2000 simulations)

— tree code
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Numerical Method
Realization of the numerical simulations

encounter-induced evolution

of star-disc systems in a
cluster environment
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Stai c_encounter: Young Star Clusters Numerical Method

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs!!

CPU GPU GRAPE

s | NnBopy1-3,5! NBODY41:2

s | NBoDY6!

1's_ Aarseth, 2 J. Makino, 3 R. Spurzem, # S. Harfst, > P. Berczik, © K. Nitadori
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Star-disc_encounters in Young Star Clusters Numerical Method

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs!!

CPU GPU GRAPE
s | NnBopy1-3,5! NBODY41:2
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p @GPU*  pGRAPES
s | NBoDYG6! NBODYG6-GpPUL?®

p | NBODY6++2

1's_ Aarseth, 2 J. Makino, 3 R. Spurzem, # S. Harfst, > P. Berczik, © K. Nitadori
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Star-disc_encounters in Young Star Clusters Numerical Method

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs!!

— More than one order of magnitude gain for large systems!

10° - - - . .
CPU GPU GRAPE —«— CPU (JUMP, JSC)
—— GPU (GeForce GTS 250)
= . 2
s | NBoDY1-3,51 NBODY41:2 1051 N i
[
p @GPU*  pGRAPES
“10* b ]
£
s | NBoDY6! NBODYG6-GPUl:® S
1 . 100k ]
p | NBODYG++
10 | E
1's_ Aarseth, 2 J. Makino, 3 R. Spurzem, # S. Harfst, > P. Berczik, © K. Nitadori 1000 2000 4000 8000 16000 32000
N
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Star-disc_encounters in Young Star Clusters Numerical Method

Performance: CPU vs. GPU

The hardware revolution of N-body simulations: GPUs!!

— More than one order of magnitude gain for large systems!
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CPU GPU GRAPE RS py—
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= . 2
s | NBoDY1-3,51 NBODY41:2 105 N |
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! 2 1,2 w0 ]
p | NBODYG++ +GPU [
10% E
LS. Aarseth, 2 J. Makino, 3 R. Spurzem, # S. Harfst, > P. Berczik, © K. Nitadori 1000 2000 4000 8000 16000 32000
N

The next step: parallelization (3-stage)
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Stellar interactions in the ONC

Encounter—lnduced disc destructlon in the ONC

Numerical evolution of the dynamical model of the ONC (t ~ 1 Myr).
Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

— Stellar encounters lead to significant disc destruction (Olczak et al., 2006):

@ ~ 5% discs destroyed in entire cluster (R=25pc)
@ ~ 20 % discs destroyed in cluster core (R =0.3pc, “Trapezium Cluster”)
ONC ——
1.0 Trapezium Cluster +
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Encounter—lnduced disc destructlon in the ONC

Stellar interactions in the ONC

Numerical evolution of the dynamical model of the ONC (t ~ 1 Myr).

Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

— Stellar encounters lead to significant disc destruction (Olczak et al., 2006):

o ~ 5% discs destroyed in entire cluster

@ ~ 20 % discs destroyed in cluster core

— High-mass stars dominate interactions:
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average number of encounters

“gravitational foci”

(R=25pc)
(R =0.3pc, “Trapezium Cluster”)

(Pfalzner et al., 2006).
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Stellar interactions in the ONC

Encounter—lnduced disc destructlon in the ONC

Numerical evolution of the dynamical model of the ONC (t ~ 1 Myr).
Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

— Stellar encounters lead to significant disc destruction (Olczak et al., 2006):
@ ~ 5% discs destroyed in entire cluster (R=25pc)

@ ~ 20 % discs destroyed in cluster core (R =0.3pc, “Trapezium Cluster”)

— High-mass stars dominate interactions: “gravitational foci” (Pfalzner et al., 2006).
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Stellar interactions in the ONC

Encounter—lnduced disc destructlon in the ONC

Numerical evolution of the dynamical model of the ONC (t &~ 1 Myr).
Investigation of the disc-mass loss over time (destruction: > 90 % mass loss).

Gravitational interactions in star clusters

@ cause very rapid disc destruction,

@ lower disc frequency close to massive stars (independent of photoevaporation!),

© make planet formation around massive stars improbable.
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Stellar interactions in the ONC

Encounter—lnduced angular momentum loss in the ONC

Investigation of the angular momentum loss (AML) in the ONC over time (t =~ 1 Myr).

— Stellar encounters lead to 3-5 % average AML in the ONC (Pfalzner & Olczak, 2007).

= Pronounced spiral arm structure triggered by encounters in most of the cluster stars.

a)

M;=0.1 M,

Iy= 2.0.‘

b)

Christoph Olczak

(ARI, MPIA, NAOC)

Dynamics in Young Star Clusters

c)

ISIMA 2011 Jun 27 - Aug 5, 2011

8/18



Stellar interactions in the ONC

Encounter—lnduced angular momentum loss in the ONC

Investigation of the angular momentum loss (AML) in the ONC over time (t =~ 1 Myr).

— Stellar encounters lead to 3-5 % average AML in the ONC (Pfalzner & Olczak, 2007).

= Pronounced spiral arm structure triggered by encounters in most of the cluster stars.

— Planet formation in triggered overdensities might be common.

(see Rice et al., 2004, 2006; Clarke & Lodato, 2009)

a)

My=01 M, 1,=20

b)
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Stellar interactions in the ONC

Encounter—lnduced angular momentum loss in the ONC

Investigation of the angular momentum loss (AML) in the ONC over time (t =~ 1 Myr).

Gravitational interactions in star clusters
@ cause significant perturbations of most protoplanetary discs,

@ potentially trigger “synchronous” planet formation.

a) b) c)
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IR el T RTINS MO [T e1e Ml Stellar interactions in sparse and dense star clusters

Numerical models of ONC-like star clusters

Using standard ONC-model for construction of additional models.

— variation of size (R), density (p), and particle number (N)

Two families of models:

@ Size-scaled:
@ Density-scaled: pox N

Rox N (p = const)
(R = const)

In total 11 cluster models with 1k, 2k, 4k, 8k, 16k, and 32k particles:

family

1k 2k 4k 8k 16k 32k

size-scaled

density-scaled

Christoph Olczak (ARI, MPIA, NAOC)

S0 S1 $2/D2 S3 S4 S5

po b1 ONC) p3 ps ps
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IR el T RTINS MO [T e1e Ml Stellar interactions in sparse and dense star clusters

Disc destruction in different cluster environments

CDF evolution of density-scaled cluster models (within R = 0.3 pc, “Trapezium Cluster”).

— trend as expected: CDF decreases with higher density

cluster disc fraction (CDF)

05 4

04 e e oeresesera e e eer et e |

0.3 . . . .
0 1 2 3 4 5
simulation time [Myr]
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Stellar interactions in sparse and dense star clusters

Disc destructlon in different cIuster environments

CDF evolution of density-scaled cluster models (within R = 0.3 pc, “Trapezium Cluster”).

— trend as expected: CDF decreases with higher density

cluster disc fraction (CDF)

03 s s s s
0 1 2 3 4 5
simulation time [Myr]
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IR el T RTINS MO [T e1e Ml Stellar interactions in sparse and dense star clusters

Disc destruction in different cluster environments

CDF evolution of density-scaled cluster models (within R = 0.3 pc, “Trapezium Cluster”).
— trend as expected: CDF decreases with higher density

— “critical density” of ONC: 2-4 times denser systems show much higher disc destruction

= in agreement with observations?

below critical density:

high-mass stars dominate disc-mass loss

D2 — | = focusing!
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[=)
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T NGC 2024 NGC 3603
S
3
g
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173
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© g .
o above critical density:
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Sta TR RTINS MO TSI Mll  Stellar interactions in the Arches Cluster

Towards an extreme environment: the Arches Cluster.

! Projected Arches
| and Quintuplet

Galactic center

50 pe

Observer

Figure: Espinoza et al. (2009) Figure: Portegies Zwart et al. (2002)
The Arches Cluster is one of the densest and most massive young star clusters in the Milky Way:
M 2 2-10* Mg, p 2 10° Mg pc—3, t ~ 2 Myr

Dynamics in Young Star Clusters ISIMA 2011 Jun 27 - Aug 5, 2011 11 /18



Stellar interactions in the Arches Cluster
Star-disc encounters in the Arches Cluster

Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).
Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):

— only few discs are not destroyed via encounters

Arches Cluster —— k!

fraction of undestroyed disks

12 14 16 18 2
tsim (Myr)
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Stellar interactions in the Arches Cluster
Star-disc encounters in the Arches Cluster

Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).

Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):

— only few discs are not destroyed via encounters

— discs survive preferentially around stars of ~ 10 M (spectral type B)

fraction of undestroyed disks

Arches Cluster ——— 1 0.9

T T 1.0

k! 0.8
1 0.7
0.6 -
0.5 -

disc fraction

0.4
E 03

[_1 high-mass discs
I low-mass discs

o atlann

12
tsim (Myr)
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Stellar interactions in the Arches Cluster
Star-disc encounters in the Arches Cluster

Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).
Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):
— only few discs are not destroyed via encounters

— discs survive preferentially around stars of ~ 10 M (spectral type B)

= agreement with observations by Stolte et al. (2010)

1 2.5 Myr Geneva 10 . i
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Stellar interactions in the Arches Cluster
Star-disc encounters in the Arches Cluster

Simulations provided by S. Harfst and S. Portegies Zwart (Harfst et al., 2009).

Analysis of encounter-induced disc-mass loss (after 2 Myr of numerical evolution):

Gravitational interactions in starburst clusters

© destroy nearly all environments of planet formation,

@ make B-type stars the most probable hosts of planetary systems.

235 members

1 2.5 Myr Geneva 10 . i
X Sron i 09 [ high-mass discs
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Motivation

A new efficient measure of mass segregation

Problem

@ Do young star clusters really show evidence for mass segregation?
o Is the observed mass segregation in young clusters due to initial conditions (i.e. primordial)?

o Does the observed degree of (dynamical) mass segregation in old clusters agree with theory?
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Motivation

A new efficient measure of mass segregation

Problem

@ Do young star clusters really show evidence for mass segregation?
o |s the observed mass segregation in young clusters due to initial conditions (i.e. primordial)?

o Does the observed degree of (dynamical) mass segregation in old clusters agree with theory?

Efficient measure of mass segregation for observational

and numerical data.
o Geometrically independent.
@ Independence of quantitative mass measurement.
o Numerical robustness.

@ Simple, intuitive measure.
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Motivation

A new efficient measure of mass segregation

Problem

@ Do young star clusters really show evidence for mass segregation?
o |s the observed mass segregation in young clusters due to initial conditions (i.e. primordial)?

o Does the observed degree of (dynamical) mass segregation in old clusters agree with theory?

Efficient measure of mass segregation for observational

and numerical data.
o Geometrically independent.
@ Independence of quantitative mass measurement. >
o Numerical robustness.

@ Simple, intuitive measure.

= Minimum Spanning Tree (MST)

Definition

MST = shortest connecting graph of all vertices without closed loops.
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The Minimum Spanning Tree (MST)

Measuring mass segregat|on via the MST

Quantifying mass segregation: AysT

The length of the MST, hsT, as a measure of mass segregation (Allison et al., 2009):

O Calculate gt of the n most massive stars: | 3% = >, e

Iref

@ Calculate < hyysT > of k sets of n random stars: | fc Aref

MST

) ) lref
© Normalization: | AyisT = 7IM§£
MST

AmsT > 1: massive stars more concentrated than reference sample.
= Quantitative measure of the degree of mass segregation.

lref

© Standard deviation: | AAysT = ,m—aésT
MST

= Quantitative measure of the significance of the result.
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The Minimum Spanning Tree (MST)

Measuring mass segregat|on via the MST

Quantifying mass segregation: AysT

The length of the MST, hsT, as a measure of mass segregation (Allison et al., 2009):

O Calculate hysT of the n most massive stars: | [{ia% = e ‘ Y2 = W1l e

ref ref
st ANisT ‘

ef
II{/?ST’ AIMST ‘

@ Calculate < st > of k sets of n random stars:

. . lref ~ref .
© Normalization: | AyisT = FM“% MvsT = I\l{?b{
MST IMST

AmsT > 1: massive stars more concentrated than reference sample.
= Quantitative measure of the degree of mass segregation.

lref

O Standard deviation: | AAysT = ,m—gSTT ‘ ATyst = A%t ‘

= Quantitative measure of the significance of the result.

An improved measure of mass segregation: NysT
2011).

Use the geometric mean [NysT of the edges rather than their sum ApsT (Olczak et al.,
= Acts as an intermediate pass that damps contributions from extreme edge lengths.
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An improved algorithm: Mram

Measuring the degree of mass segregatlon in model star clusters

Star cluster with single stars and Kroupa (2001) mass function in the range 0.08 — 150 M.

Initial mass segregation due to prescription of Subr et al. (2008): parametrization via S € (1,0].

Number of stars: N = 1k J

Index of mass segregation: S = 0.3

9.0 T T T T
8.0 10 b f T f“f&ﬁ[ J
7.0
6.0
] g 107 J
= 50 3
& £
2 4.0
<
3.0 108 L J
2.0
. a | !
104 . . |
0.0 0.1 1 10 100
geometric arithmetic mass [Msun]
Figure: 5, 10, 20, 50, 100, 200, 500, 1000 most massive stars. Figure: Ry, (red), 1/2Ry ) (green), 1/4Ry, 1 (blue).
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Avplying Mram
Mass-segregation in the ONC

Application of MygT to observational data of the ONC obtained by Hillenbrand (1997).

@ Analysis via cumulative and differential mass groups:
— Very strong segregation of the five most massive stars.

6.0

5.0

4.0

3.0

Mwst

2.0

e

1.0

0.0
cumulative differential

Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars.
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Avplying Mram
Mass-segregation in the ONC

Application of MygT to observational data of the ONC obtained by Hillenbrand (1997).

@ Analysis via cumulative and differential mass groups:
— Very strong segregation of the five most massive stars.

o Effect of incompleteness (N = 929 — 485):

6.0

5.0

4.0

3.0

Mwst
completeness

2.0

e

1.0

“0.01 0.1 1 10 100

0.0 mass [M,
cumulative differential Msurl

Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars. Figure: Completeness model as a function of stellar mass and radial position.

istoph Olczak (ARI, MPI

NAOC) Dynamics in Young Star Clusters ISIMA 2011 Jun 27 - Aug 5, 2011 16 / 18



Avplying Mram
Mass-segregation in the ONC

Application of MygT to observational data of the ONC obtained by Hillenbrand (1997).

@ Analysis via cumulative and differential mass groups:
— Very strong segregation of the five most massive stars.

o Effect of incompleteness (N = 929 — 485): 'yig rises for most massive stars.

6.0 6.0
5.0 5.0
4.0 4.0
= =
2 30 2 30
[ i
2.0 2.0
10 +id i l e 10 i 1 i E ¥
0.0 0.0
cumulative differential cumulative differential
Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars. Figure: Incomplete sample: 485 stars.
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Mass Segregati Young Star Clusters LGS SWSE

Mass-segregation in the ONC

Application of MygT to observational data of the ONC obtained by Hillenbrand (1997).

@ Analysis via cumulative and differential mass groups:
— Very strong segregation of the five most massive stars.

o Effect of incompleteness (N = 929 — 485): 'yig rises for most massive stars.

@ Sample reconstruction (N = 485 — 830) via inverse individual completeness.
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Figure: 5, 10, 20, 50, 100, 200, 500, 929 most massive stars. Figure: Reconstructed sample: 830 stars.
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Applying M ram

Dynamical evolutlon of mass segregatlon

Single star cluster (spherically symmetric, no substructure):

o density distribution: isothermal @ virial ratio: @ =0.1

o velocity distribution: Maxwell o particle numbers: N = {1k, 10k}

— Very rapid dynamical mass segregation within few tqy,.

N
(As expected: tseg & <12 Moty & tayn.)

1k 10k

10.0

Mwst

Amsr

X 0.0 1.0 2.0 3.0 4.0 5.0
tsim (Myr] tsim [Myr]

Figure: 5, 10, 20, 50, 500 most massive stars.
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Summary

Stellar interactions in young star clusters

Stellar encounters affect the star and planet formation process in a huge variety:
o Massive stars (in the ONC) act as gravitational foci.
@ Most star-disc systems are (weakly) perturbed: triggering of planet formation?
o Critical density of ONC: transition of dominant mode of disc destruction.

@ Arches cluster: potential planet formation around B-type stars.

Mass segregation in young star clusters

Mass segregation in young star clusters is a key observable of the star formation process:

o New measure of mass segregation: '\ys = Minimum Spanning Tree + geometrical mean.

— I'msT highly advantageous over classical AyigT method.
@ ONC shows significant segregation of massive members.

@ Very rapid mass segregation of young star clusters.

Christoph Olczak (ARI, MPIA, NAOC) Dynamics in Young Star Clusters ISIMA 2011 Jun 27 - Aug 5, 2011 18 / 18



istoph Olczak (ARI, MPI

NAOC) Dynamics in Young Star Clusters ISIMA 2011 Jun 27 - Aug 5, 2011 18 /18



Numerical implementation
Numerical implementation of the MST

A three-step procedure

© 2D Delaunay triangulation of a three-dimensional set of vertices (GEOMPACK: Joe, 1991)
@ Sorting of triangles’ edges in ascending order (and removal of duplicates).

© Construction of MST via Kruskal’s algorithm (with an efficient union-find-algorithm).
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Numerical implementation of the MST

A three-step procedure

© 2D Delaunay triangulation of a three-dimensional set of vertices (GEOMPACK: Joe, 1991)
@ Sorting of triangles’ edges in ascending order (and removal of duplicates).

© Construction of MST via Kruskal’s algorithm (with an efficient union-find-algorithm).

Delaunay triangulation (in the plane)

No point in set of points P is inside the circumcircle of any triangle in DT(P).

e
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Numerical implementation
Numerical implementation of the MST

A three-step procedure

© 2D Delaunay triangulation of a three-dimensional set of vertices (GEOMPACK: Joe, 1991)
@ Sorting of triangles’ edges in ascending order (and removal of duplicates).

© Construction of MST via Kruskal’s algorithm (with an efficient union-find-algorithm).
o

Kruskal’s algorithm

© Remove the next shortest edge from the graph.

@ Check whether it forms a close loop with the edges of the MST.
@ If not, add it to the MST.

4

An efficient union-find algorithm

@ Union-by-rank: merge smaller tree of nodes into larger tree.

@ Path compression: connect nodes with the tree root.
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Numerical implementation
Computational cost of the MST

Definition

|E|: number of edges
|V|: number of vertices

@ Delaunay triangulation:

O(IV| - log|V]). 1)
@ Sorting of edges:

O(|E| - log(|E])) - ()
© Union-find algorithm:

O(|E| - log™ [V]), 3)

where
log™(n) = min{s € N | log(log(. .. log(n)...)) < 1}

s times

= In practice constant (though in principle unlimited).

The total computational cost is O(| V| - log |V|). J
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Testing Mram

Artificial configurations of mass segregation

The power of N\t for some simple setups of artificial mass

segregation.

Three artificial configurations of massive stars with identical

AmsT — but different I'yigT - in a model star cluster:

@ ‘“cross”
e “ring”

e “clump’
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Testing Mram
Measuring the degree of mass segregation in model star clusters

Star cluster with single stars and Kroupa (2001) mass function in the range 0.08 — 150 M.

Initial mass segregation due to prescription of Subr et al. (2008): parametrization via S € (1,0].

Number of stars: N = 1k
Index of mass segregation: S = 0.3
9.0 ‘ ; ; ‘
8.0 10 b f T f“f&ﬁ[ J
7.0
6.0
] g 107 J
= 50 3
& £
% 40
<
3.0 108 L i
20
. a | !
104 L L |
0.0 0.1 1 10 100
geometric arithmetic mass [Msun]
Figure: 5, 10, 20, 50, 100, 200, 500, 1000 most massive stars. Figure: Ry, (red), 1/2Ry, 1, (green), 1/4Ry 1 (blue).
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